Skip to main content
Log in

Familial whole-arm translocations (1;19), (9;13), and (12;21): a review of 101 constitutional exchanges

  • Original Article
  • Published:
Journal of Applied Genetics Aims and scope Submit manuscript

Abstract

We report here on 3 familial whole-arm translocations (WATs), namely the 8th instance of t(1;19)(p10;q10) and 2 novel exchanges: t(9;13)(p10;q10) and t(12;21)(p10;q10). The exchanges (1;19) and (12;21) were ascertained through a balanced carrier, whereas the t(9;13) was first diagnosed in a boy with a trisomy 9p syndrome and der(9p13p). Results of FISH analyses with the appropriate α-satellite probes were as follows. Family 1, t(1;19): the D1Z5 probe gave a strong signal on both the normal chromosome 1 and the der(1q19p) as well as a weak signal on the der(1p19q). Family 2, t(9;13): the centromere-9 alphoid and D13Z1/D21Z1 probes under standard stringency gave no signal on the der(9p13p) in both the proband and a carrier brother, whereas the der(9q13q) was labelled only with the centromere-9 alphoid repeat in the latter; yet, this probe under low stringency revealed a residual amount of alphoid DNA on the der(9p13p) in the carrier. Family 3, t(12;21): the D12Z3 probe gave a signal on the normal chromosome 12 and the der(12p21q), whereas the D13Z1/D21Z1 repeat labelled the der(12q21p), the normal chromosome 21, and both chromosomes 13. Out of 101 WATs compiled here, 73 are distinct exchanges, including 32 instances between chromosomes with common alphoid repeats. Moreover, 7/9 of recurrent WATs involved chromosomes from the same alphoid family. Thus constitutional WATs appear to recur more frequently than other reciprocal exchanges, often involve chromosomes with common alphoid repeats, and can mostly be accounted for the great homology in alphoid DNA that favours mispairing and illegitimate nonhomologous recombination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Borgaonkar DS, 2004. Chromosomal Variation in Man Online Database. Jonh Wiley & Sons, Inc. Http://www.wiley.com//legacy/products/subject/ life/ Borgaonkar/access.html (accessed in November 2006).

  • Cantú ES, Khan TA, Pai GS, 1992. Fluorescence in situ hybridisation (FISH) of a whole-arm translocation involving chromosomes 18 and 20 with alpha-satellite DNA probes:detection of acentromeric DNA break? Am J Med Genet 44: 340–344.

    Article  PubMed  Google Scholar 

  • Cooper PJ, Towe C, Crolla JA, 1993. A balanced whole arm reciprocal translocation resulting in three different adverse pregnancy outcomes. J Med Genet 30: 417–418.

    Article  CAS  PubMed  Google Scholar 

  • Crolla JA, Gilgenkrantz S, de Grouchy J, Kajii T, Bobrow M, 1989. Incontinentia pigmenti and X-autosome translocations. Non-isotopic in situ hybridisation with an X-centromere-specific probe (pSV2X5) reveals a possible X-centromeric break-point in one of five published cases. Hum Genet 81: 269–272.

    Article  CAS  PubMed  Google Scholar 

  • Czakó M, Riegel M, Morava É, Schinzel A, Kosztolányi G, 2002. Patient with rheumatoid arthritis and MCA/MR syndrome due to unbalanced der(18) transmission of a paternal translocation t(18;20)(p11.1;p11.1). Am J Med Genet 108: 226–228.

    Article  PubMed  Google Scholar 

  • Daniel A, Hook EB, Wulf G, 1989. Risks of unbalanced progeny at amniocentesis to carriers of chromosome rearrangements: data from United States and Canadian laboratories. Am J Med Genet 33: 14–53.

    Article  CAS  PubMed  Google Scholar 

  • Diaz-Castańos L, Rivera H, Perez-Garcia G, Dos Santos E, Malet P, 1997. A further whole arm 1;19 translocation with alpha-satellite DNA breakage. 8: 33–38.

    Google Scholar 

  • Farrell SA, Fan YS, 1995. Balanced nonacrocentric whole-arm reciprocal translocations: a de novo case and literature review. Am J Med Genet 55: 423–426.

    Article  CAS  PubMed  Google Scholar 

  • Gardner RJM, Sutherland GR, 2004. Chromosome abnormalities and genetic counseling, 3rd edn. Oxford University Press, New York: 417–418.

    Google Scholar 

  • Gravholt CH, Caprani M, Friedrich U, 1994. Fluorescence in situ hybridisation reveals a break in the alpha-satellite DNA of chromosome 1 in a family with a balanced whole-arm translocation. Hum Genet 94: 504–508.

    Article  CAS  PubMed  Google Scholar 

  • Hirai H, Wijayanto H, Tanaka H, Mootnick AR, Hayano A, Perwitasari-Farajallah D, et al. 2005. A whole-arm translocation (WAT8/9) separating Sumatran and Bornean agile gibbons, and its evolutionary features. Chromosome Res 13: 123–133.

    Article  CAS  PubMed  Google Scholar 

  • Hodgson SV, Neville B, Jones RWA, Fear C, Bobrow M, 1985. Two cases of X/autosome translocation in females with incontinentia pigmenti. Hum Genet 71: 231–234.

    Article  CAS  PubMed  Google Scholar 

  • Koiffmann CP, de Souza DH, Diament A, Ventura HB, Alves RS, Kihara S, Wajntal A, 1993. Incontinentia pigmenti achromians (hypomelanosis of Ito, MIM 146150): further evidence of localization at Xp11. Am J Med Genet 46: 529–533.

    Article  CAS  PubMed  Google Scholar 

  • Lawce H, Buckmaster D, Magenis E, Olson S, 2006. Split centromeric alpha-satellite FISH signals in a whole arm translocation 5p;10p: consequences and implications for interphase FISH studies. J Assoc Genet Technol 32: 5–7.

    PubMed  Google Scholar 

  • Lee C, Wevrick R, Fisher RB, Ferguson-Smith MA, Lin CC, 1997. Human centromeric DNAs. Hum Genet 100: 291–304.

    Article  CAS  PubMed  Google Scholar 

  • McGhee EM, Qu Y, Wohlferd MM, Goldberg JD, Norton ME, Cotter PD, 2001. Prenatal diagnosis and characterization of an unbalanced whole arm translocation resulting in monosomy for 18p. Clin Genet 59: 274–278.

    Article  CAS  PubMed  Google Scholar 

  • Milot JA, Noel LP, Lemieux N, Richer CL, 1987. Ocular and cytogenetic findings in three new cases of trisomy 9p. Metab Pediatr Syst Ophthalmol 10: 89–94.

    CAS  PubMed  Google Scholar 

  • Perry J, Slater HR, Choo KH, 2004. Centric fission - simple and complex mechanisms. Chromosome Res 12: 627–640.

    Article  CAS  PubMed  Google Scholar 

  • Rivera H, Enriquez-Guerra MA, Rolon A, Jimenez-Sainz ME, Nunez-Gonzalez L, Cantu JM, 1986. Whole-arm t(X;17) (Xp17q;Xq17p) and gonadal dysgenesis. A further exception to the critical region hypothesis. 29: 425–428.

    CAS  Google Scholar 

  • Romanova LY, Deriagin GV, Mashkova TD, Tumeneva IG, Mushegian AR, Kisselev LL, Alexandrov IA, 1996. Evidence for selection in evolution of alpha satellite DNA: the central role of CENP-B/pJ alpha binding region. J Mol Biol 261: 334–340.

    Article  CAS  PubMed  Google Scholar 

  • Scheres JM, Hustinx WJ, Ter Haar BG, Rutten van der Mee-Wienen HH, 1978. 2:2 and 3:1 meiotic disjunctions in a carrier of a reciprocal 10/14 translocation. 13: 481–485.

  • Schober AM, Fonatsch C, 1978. Balanced reciprocal whole-arm translocation t(1;19) in three generations. Hum Genet 42: 349–352.

    Article  CAS  PubMed  Google Scholar 

  • Stankiewicz P, Lupski JR, 2002. Genome architecture, rearrangements and genomic disorders. Trends Genet 18: 74–82.

    Article  CAS  PubMed  Google Scholar 

  • Tümer Z, Berg A, Mikkelsen M, 1995. Analysis of a whole arm translocation between chromosomes 18 and 20 using fluorescence in situ hybridisation: detection of a break in the centromeric alpha-satellite sequences. Hum Genet 95: 299–302.

    PubMed  Google Scholar 

  • Van Ravenswaaij-Arts C, van der Looij E, Smeets D, 1999. Trisomy 9p: a clinical picture and the importance of examining the family. Ned Tijdschr Geneeskd 143: 682–686.

    PubMed  Google Scholar 

  • Velagaleti GV, Morgan DL, Tonk VS, 2000. Trisomy 5p. A case report and review. Ann Genet 43: 143–145.

    CAS  PubMed  Google Scholar 

  • Wang J-CC, Nemana L, Kou SY, Habibian R, Hajianpour MJ, 1997. Molecular cytogenetic characterization of 18;21 whole arm translocation associated with monosomy 18p. Am J Med Genet 71: 463–466.

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Ogawa S, Hangaishi A, Qiao Y, Hosoya N, Nanya Y, et al. 2003. Molecular characterization of the recurrent unbalanced translocation der(1;7) (q10;p10). Blood 102: 2597–2604.

    Article  CAS  PubMed  Google Scholar 

  • Warburton D, 1991. De novo balanced chromosome rearrangements and extra marker chromosomes identified at prenatal diagnosis: clinical significance and distribution of breakpoints. Am J Hum Genet 49: 995–1013.

    CAS  PubMed  Google Scholar 

  • Wolstenholme J, Faed MJ, Robertson J, Lamont MA, 1983. Chromosome abnormality in couples with histories of multiple abortions. The outcome of pregnancies subsequent to ascertainment and a study of familial translocation carriers. Hum Genet 63: 45–47.

    Article  CAS  PubMed  Google Scholar 

  • Wong KF, 2003. Waldenstrom macroglobulinemia with a novel der(8;17)(q10;q10). Cancer Genet Cytogenet 141: 83–85.

    Article  CAS  PubMed  Google Scholar 

  • Youings S, Ellis K, Ennis S, Barber J, Jacobs P, 2004. A study of reciprocal translocations and inversions detected by light microscopy with special reference to origin, segregation, and recurrent abnormalities. Am J Med Genet A 126: 46–60.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Horacio Rivera.

Additional information

These authors contributed equally to this manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vázquez-Cárdenas, A., Vásquez-Velásquez, A.I., Barros-Núñez, P. et al. Familial whole-arm translocations (1;19), (9;13), and (12;21): a review of 101 constitutional exchanges. J Appl Genet 48, 261–268 (2007). https://doi.org/10.1007/BF03195221

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03195221

Keywords

Navigation