Skip to main content
Log in

The role of the protein-binding on the mode of drug action as well the interactions with other drugs

  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

Summary

Drug transport and disposition are influenced by a non-specific and reversible drug binding to plasma and tissues proteins. Albumin and al acid glycoprotein are the most important transport proteins of the blood. Albumin possesses specific sites for acidic and basic drug binding and can interact with them in the plasma since a third site is trapped only by digoxin. Diseases and stress conditions induce conformational changes either in plasma or in tissue proteins by the synthesis of endogenous substances which can strong interfere with the amount of the free pharmacological effective drug ratio. This may affect the binding of drugs in target molecules inducing significant pharmacokinetic alterations. Stress conditions are associated with FFA increase in serum playing an antagonistic role with other acidic molecules (e.g. ampicillin) to the same binding site. The bounded drug is displaced and freer ratio is available to interact with various organ receptors leading to pharmacological effect enhancement and therefore to side effects manifestation such as seizures. Furthermore conjunctive tissues diseases, ageing, prolonged bleeding, starvation or diseases affecting protein profile, characterized by reduced total plasma proteins, followed by albumin decrease and lessen binding sites lead to more free drug availability enhancing its pharmacological effect. Increased a1-acid glycoprotein the acute phase protein as by heart infraction or liver morbidities (e.g CCl4 intoxication) mainly occupied from basic substances, in the case of cationic drug treatment resulted to the enhancement of the and consequently to pronounced effectiveness. In addition, renal failure reduced free fractions of many acidic drugs. It may be concluded that by narrowed therapeutic index of a medicine, and when drug/drug or drug/disease interactions are anticipated, drug monitoring seems to be necessary for its dosage adjustment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benkestock K., Edlund P.O., Roeraade J. (2005): Electrospray ionization mass spectrometry as a tool for determination of drug binding sites to human serum albumin by noncovalent interaction. Rapid Commun. Mass Spectrom., 19, 1637–1643.

    Article  CAS  PubMed  Google Scholar 

  2. Sudlow G., Birkett D.J., Wade D.N. (1975): The characterization of two specific drug binding sites on human serum albumin. Mol. Pharmacol., 11, 824–832.

    CAS  PubMed  Google Scholar 

  3. Wanwimolruk S., Birkett D.J., Brooks P.M. (1983): Structural requirements for drug binding to site II on human serum albumin. Mol. Pharmacol., 24, 458–463.

    CAS  PubMed  Google Scholar 

  4. Frostell-Karlsson A., Remaeus A., Roos H., Andersson K., Borg P., Hämäläinen M., Karlsson R. (2000): Biosensor analysis of the interaction between immobilized human serum albumin and drug compounds for prediction of human serum albumin binding levels. J. Med. Chem., 43, 1986–1992.

    Article  CAS  PubMed  Google Scholar 

  5. Olsen H., Andersen A., Nordbø A., Kongsgaard U.E., Børmer O.P. (2004): Pharmaceutical-grade albumin: impaired drug-binding capacity in vitro. BMC Clin. Pharmacol., 4: 4.

    Article  PubMed  Google Scholar 

  6. Kragh-Hansen U. (1988): Evidence for a large and flexible region of human serum albumin possessing high affinity binding sites for salicylate, warfarin, and other ligands. Mol. Pharmacol., 34, 160–171.

    CAS  PubMed  Google Scholar 

  7. Prijovich Z.M., Leu Y.L., Roffler S.R. (2007): Effect of pH and human serum albumin on the cytotoxicity of a glucuronide prodrug of 9-aminocamptothecin. Cancer Chemother Pharmacol., 60, 7–17.

    Article  CAS  PubMed  Google Scholar 

  8. Hu O.Y., Chu K.M., Liu H.S., Chiao S.F., Ho W., Ho S.T. (1993): Reinduction of the hypnotic effects of thiopental with NSAIDs by decreasing thiopental plasma protein binding in humans. Acta Anaesthesiol. Scand., 37, 258–261.

    Article  CAS  PubMed  Google Scholar 

  9. Birkett D.J., Myers S.P., Sudlow G. (1977): Effects of fatty acids on two specific drug binding sites on human serum albumin. Mol. Pharmacol., 13, 987–992.

    CAS  PubMed  Google Scholar 

  10. Vorum H., Honore B. (1996): Influence of fatty acids on the binding of warfarin and phenprocoumon to human serum albumin with relation to anticoagulant therapy. J. Pharm. Pharmacol., 48, 870–875

    CAS  PubMed  Google Scholar 

  11. Ivarsen R., Brodersen R. (1989): Displacement of bilirubin from adult and newborn serum albumin by a drug and fatty acid. Dev. Pharmacol. Ther., 12, 19–29.

    CAS  PubMed  Google Scholar 

  12. Sansom L.N., Evans A.M. (1995): What is the true clinical significance of plasma protein binding displacement interactions? Drug Saf., 12, 227–233.

    Article  CAS  PubMed  Google Scholar 

  13. Simard J.R., Zunszain P.A., Hamilton J.A., Curry S. (2006): Location of high and low affinity fatty acid binding sites on human serum albumin revealed by NMR drug-competition analysis. J. Mol. Biol., 361, 336–351.

    Article  CAS  PubMed  Google Scholar 

  14. Wosilait W.D., Ryan M.P. (1979): The effects of oleic acid, tolbutamide, and oxyphenbutazone on the binding of warfarin by human serum albumin. Res. Commun. Chem. Pathol. Pharmacol., 25, 577–584.

    CAS  PubMed  Google Scholar 

  15. Huang B.X., Dass C., Kim H.Y. (2005): Probing conformational changes of human serum albumin due to unsaturated fatty acid binding by chemical cross-linking and mass spectrometry. Biochem. J., 387(Pt 3), 695–702.

    CAS  PubMed  Google Scholar 

  16. Urien S., Albengres E., Zini R., Tillement J.P. (1982): Evidence for binding of certain acidic drugs to alpha 1-acid glycoprotein. Biochem. Pharmacol., 31, 3687–3689.

    Article  CAS  PubMed  Google Scholar 

  17. Holladay J.W., Dewey M.J., Michniak B.B., Wiltshire H., Halberg D.L., Weigl P., Liang Z., Halifax K., Lindup W.E., Back D.J. (2001): Elevated alpha-1-acid glycoprotein reduces the volume of distribution and systemic clearance of saquinavir. Drug Metab. Dispos., 29, 299–303.

    CAS  PubMed  Google Scholar 

  18. Zhou H.H., Adedoyin A., Wilkinson G.R. (1990): Differences in plasma binding of drugs between Caucasians and Chinese subjects. Clin. Pharmacol. Ther., 48, 10–17.

    CAS  PubMed  Google Scholar 

  19. Belpaire F.M., Bogaert M.G., Mussche M.M. (1977): Influence of acute renal failure on the protein binding of drugs in animals and in man. Eur. J. Clin. Pharmacol., 11, 27–32.

    Article  CAS  PubMed  Google Scholar 

  20. Henderson S.J., Lindup W.E. (1990): Interaction of 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid, an inhibitor of plasma protein binding in uraemia, with human albumin, Biochem. Pharmacol., 40, 2543–2548.

    Article  CAS  PubMed  Google Scholar 

  21. Viani A., Rizzo G., Carrai M., Pacifici G.M. (1992): The effect of ageing on plasma albumin and plasma protein binding of diazepam, salicylic acid and digitoxin in healthy subjects and patients with renal impairment. Br. J. Clin. Pharmacol., 33, 299–304.

    CAS  PubMed  Google Scholar 

  22. Cistola D.P., Small D.M. (1991): Fatty acid distribution in systems modeling the normal and diabetic human circulation. A13C nuclear magnetic resonance study. J. Clin. Invest., 87, 1431–1441.

    Article  CAS  PubMed  Google Scholar 

  23. Vorum H., Jorgensen H.R., Brodersen R. (1993): Variation in the binding affinity of warfarin and phenprocoumon to human serum albumin in relation to surgery. Eur. J. Clin. Pharmacol., 44, 157–162.

    Article  CAS  PubMed  Google Scholar 

  24. Vorum H., Fisker K., Honore B. (1997): Palmitate and stearate binding to human serum albumin. Determination of relative binding constants. J. Pept. Res., 49, 347–354.

    CAS  PubMed  Google Scholar 

  25. Tsutsumi Y., Maruyama T., Takadate A., Goto M., Matsunaga H., Otagiri M (1999): Interaction between two dicarboxylate endogenous substances, bilirubin and an uremic toxin, 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid, on human serum albumin. Pharm. Res., 16 916–923.

    Article  CAS  PubMed  Google Scholar 

  26. Sakai T., Yamasaki K., Sako T., Kragh-Hansen U., Suenaga A., Otagiri M. (2001): Interaction mechanism between indoxyl sulfate, a typical uremic toxin bound to site II, and ligands bound to site I of human serum albumin, Pharm. Res., 18, 520–524.

    Article  CAS  PubMed  Google Scholar 

  27. Soltys B.J., Hsia J.C. (1978): Steroid modulation of human serum albumin binding properties. A spin label study. J. Biol. Chem., 253, 4266–4269.

    CAS  PubMed  Google Scholar 

  28. Bhattacharya A.A., Curry S., Franks N.P. (2000): Binding of the general anesthetics propofol and halothane to human serum albumin. High resolution crystal structures. J. Biol. Chem., 275, 38731–38738.

    Article  CAS  PubMed  Google Scholar 

  29. Petitpas I., Grune T., Bhattacharya A.A., Curry S. (2001): Crystal structures of human serum albumin complexed with monounsaturated and polyunsaturated fatty acids. J. Mol. Biol., 314, 955–960.

    Article  CAS  PubMed  Google Scholar 

  30. Petersen C.E., Ha C.E., Curry S., Bhagavan N.V. (2002): Probing the structure of the warfarin-binding site on human serum albumin using site-directed mutagenesis. Proteins, 47, 116–125.

    Article  CAS  PubMed  Google Scholar 

  31. Tsopanakis C., Tesserommatis C. (1991): Cold swimming stress: effects on serum lipids, lipoproteins and LCAT activity in male and female rats. Pharmacol. Biochem. Behav., 38, 813–816.

    Article  CAS  PubMed  Google Scholar 

  32. Tesserommatis C., Tsopanakis C., Varonos D. (1988): Changes in serum lipids with the presence of various factors. Beitr. Infusionsther., 23, 195–197.

    Google Scholar 

  33. Saranteas T., Tesseromatis C., Potamianou A., Mourouzis C., Varonos D. (2002): Stress-induced lidocaine modification in serum and tissues. Eur. J. Drug Metabol. Pharmacokinet., 27, 229–232.

    CAS  Google Scholar 

  34. Tesseromatis C., Trichilis A., Tsivos E., Messari J., Triantaphyllidis H., Varonos D.D. (2001): Does stress influence ampicillin concentration in serum and tissues? Eur. J. Drug Metab01. Pharmacokinet., 26, 167–171.

    Article  CAS  Google Scholar 

  35. Tesserommatis C., Tsopanakis C., Symeonoglou G., Loukissa M., Kouvarou E., Varonos D.D. (1996): How harmless is FFA enhancement? Eur. J. Drug Metabol. Pharmacokinet., 21, 213.

    Article  CAS  Google Scholar 

  36. Trichilis A., Saranteas T., Potamianou A., Mourouzis C., Tesseromatis C. (2003): Quinolone levels in serum and maxillofacial tissues under ibuprofen co-administration following surgical trauma. J. Musculoskelet. Neuronal Interact., 3, 170–175.

    CAS  Google Scholar 

  37. Trichilis A., Tesserommatis C., Varonos D. (2000): Changes in serum levels of quinolones in rats under the influence of experimental trauma. Eur. J. Drug Metabol. Pharmacokinet., 25, 73–78.

    Article  CAS  Google Scholar 

  38. Saranteas T., Zotos N., Lolis E., Stranomiti J., Mourouzis C., Chantzi C., Tesseromatis C. (2005): Mechanisms of ketamine action on lipid metabolism in rats. Eur. J. Anaesthesiol., 22, 222–226.

    CAS  PubMed  Google Scholar 

  39. Ghuman J., Zunszain P.A., Petitpas I., Bhattacharya A.A., Otagiri M., Curry S. (2005): Structural basis of the drugbinding specificity of human serum albumin. J. Mol. Biol. 353, 38–52.

    Article  CAS  PubMed  Google Scholar 

  40. Tigka E., Daskala I., Rallis G., Anagnostopoulou S., Tesseromatis C. (2005): Adjuvant arthritis-induced changes on ampicillin binding in serum and tissues under the influence of non-steroidal anti-inflammatory drugs in rats. Eur. J. Drug Metabol. Pharmacokinet., 30, 235–241.

    Article  CAS  Google Scholar 

  41. Saranteas T., Zotos N., Chantzi C., Mourouzis C., Rallis G., Anagnostopoulou S., Tesseromatis C. (2005): Ketamine-induced changes in metabolic and endocrine parameters of normal and 2-kidney 1-clip rats. Eur. J. Anaesthesiol., 22, 875–878.

    Article  CAS  PubMed  Google Scholar 

  42. Tillement J.P., Lhoste F., Giudicelli J.F. (1978): Diseases and drug protein binding. Clin. Pharmacokinet., 3, 144–154.

    Article  CAS  PubMed  Google Scholar 

  43. Perucca E. (1980): Plasma protein binding of phenytoin in health and disease: relevance to therapeutic drug monitoring. Ther. Drug Monit., 2, 331–344.

    CAS  PubMed  Google Scholar 

  44. Tsivou E., Melakopoulos I., Kotsiou A., Anagnostopoulou S., Tesseromatis C. (2005): Alterations in cefalosporin levels in the serum and mandible of hyperlipaedemic rats after coadministration of ibuprofen. Eur. J. Drug Metabol. Pharmacokinet., 30, 171–174.

    Article  CAS  Google Scholar 

  45. Melakopoulos I., Tesseromatis C., Saranteas T., Karabinos I. (1997): Changes of serum and tissue amoxicillin levels following chlorpromazine administration in rats. Anaerobe, 3, 103–105.

    Article  CAS  PubMed  Google Scholar 

  46. Saranteas T., Mourouzis C., Dannis C., Alexopoulos C., Lolis E., Tesseromatis C. (2004): Effect of various stress models on lidocaine pharmacokinetic properties in the mandible after masseter injection. J. Oral Maxillofac. Surg., 62, 858–862.

    Article  PubMed  Google Scholar 

  47. Kotsiou A., Tsamouri M., Anagnostopoulou S., Tzivras M., Vairactaris E., Tesseomatis C. (2006): H3 Propranolol serum levels following lidocaine administration in rats with CCL4 induced liver damage. Eur. J. Drug Metabol. Pharmacokinet., 31, 97–101.

    CAS  Google Scholar 

  48. Tesseromatis C., Kotsiou A., Tsagataki M., Tigka E., Vovou J., Alevizou A., Perisanidis C., Saranteas T., Karakitsos D., Karabinis A., Kostopanagiotou G. (2007): In vitro binding of lidocaine to liver tissue under the influence of propranolol: another mechanism of interaction? Eur J Drug Metabol. Pharmacokinet., 32, 213–217.

    CAS  Google Scholar 

  49. Fichtl B., Gerdsmeier W. (1981): Increased plasma protein binding of propranolol in rabbits with acute renal failure. Life Sciences, 28, 31–35.

    Article  CAS  PubMed  Google Scholar 

  50. Fichtl B. (1990): The influence of renal failure on-drug binding in plasma and tissues. Nieren-und Hochdruckkrankheiten, 19, 447–449.

    Google Scholar 

  51. Bree F., Houin G., Barre J., Moretti J.L., Wirquin V., Tillement J.P. (1986): Pharmacokinetics of intravenously administered 125I-labelled human alpha 1-acid glycoprotein. Clin. Pharmacokinet., 11, 336–342.

    Article  CAS  PubMed  Google Scholar 

  52. Fichtl B., Nieciecki A., Walter K. (1991): Tissue binding versus plasma binding of drugs: General Principles and Pharmacokinetic Consequences. Adv. Drug Res., 20, 117–166.

    CAS  Google Scholar 

  53. Habig W.H., Pabst M.J., Fleischner G., Gatmaitan Z., Arias I.M., Jakoby W.B. (1974): The identity of glutathione S-transferase B with ligandin, a major binding protein of liver. Proc. Natl. Acad. Sci. USA, 71, 3879–3882.

    Article  CAS  PubMed  Google Scholar 

  54. Saranteas T., Mourouzis C., Koumoura F., Tesseromatis C. (2003): Effects of propranolol or paracetamol on lidocaine concentrations in serum and tissues. J. Oral Maxillofac. Surg., 61, 604–607.

    Article  PubMed  Google Scholar 

  55. Tesseromatis C. Saranteas T., Chatzijanni E., Anagnostopoulou S., Cotsiou A., Chantzi C. (2003): Modifications of clonidine binding to rabbit liver protein under the influence of non-steroid-anti-inflammatory drugs in vitro. Eur. J. Drug Metabol. Pharmacokinet., 28, 245–247.

    Article  Google Scholar 

  56. Fichtl B., Kurz H. (1978): Binding of drugs to human muscle. Eur. J. Clin. Pharmacol., 14, 335–340.

    Article  CAS  PubMed  Google Scholar 

  57. Tesseromatis C., Fichtl B., Kurz H. (1987): Binding of nonsteroid anti-inflammatory drugs and warfarin to liver tissue of rabbits in vitro. Eur. J. Drug Metabol. Pharmacokinet., 12, 161–167.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tesseromatis, C., Alevizou, A. The role of the protein-binding on the mode of drug action as well the interactions with other drugs. Eur. J. Drug Metabol. Pharmacokinet. 33, 225–230 (2008). https://doi.org/10.1007/BF03190876

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03190876

Key words

Navigation