Skip to main content
Log in

Pharmacokinetics and biotransformation of the prostacyclin analogue, ZK 36 374 I. Synthesis of a tritium marker and excretion of [3H]-ZK 36 374 in the rat

  • Original Papers
  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

Summary

ZK 36 374, a chemically stable and equipotent prostacyclin analogue, was tritium labelled at position 11 and administered orally or intravenously to rats in doses of 3–200 μg/kg. Excretion of radioactivity via urine, faeces and bile was studied in male and female animals. Enterohepatic recirculation was assessed by bile duct cannulation and by intraduodenal administration of radioactive bile samples. Metabolic patterns were determined by HPLC separation.

Most of the ZK 36 374 was metabolized in the rat and mainly excreted renally (60% of dose) in the form of 12 metabolites. Half-lives of renal and biliary elimination were 0.7–0.8 h in the α-phase. About 60% of the amount excreted via the bile was reabsorbed in the gut. Radioactivity in the urine collected on days 3, 5 and 7 was higher by one order of magnitude than on the preceding days 2, 4 and 6. Variations in the volume of urine as compared to a control group and different clearance rates of metabolites could be excluded as possible explanations for this effect, which still remains to be clarified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dusting GJ., Moncada S. and Vane JR. (1977): Prostacyclin (PGX) is the endogenous metabolite responsible for relaxation of coronary arteries induced by arachidonic acid. Prostaglandins13, 3–16.

    Article  CAS  PubMed  Google Scholar 

  2. Moncada S., Gryglewski RJ., Bunting S. and Vane JR. (1976): A lipid peroxide inhibits the enzyme in blood vessel microsomes that generates from prostaglandin endoperoxides the substance (prostaglandin X) which prevents platelet aggregation. Prostaglandins12, 715–736.

    Article  CAS  Google Scholar 

  3. Johnson RA., Morton DR., Kinner JH., Gorman RR., McGuire JC., Sun FF., Whittaker N., Bunting S., Salmon J., Moncada S., Higgs EA. and Vane J. (1976): The chemical structure of prostaglandin X (prostacyclin). Prostaglandins12, 915–928.

    Article  CAS  PubMed  Google Scholar 

  4. Moncada S., Higgs, EA. and Vane JR. (1977): Human arterial and venous tissues generate prostacylin (prostaglandin X) a potent inhibitor of platelet aggregation. Lancet1, 18–20.

    Article  CAS  PubMed  Google Scholar 

  5. Dusting GJ, Moncada S. and Vane JR., (1978): Disappearance of prostacyclin (PGI2) in the circulation of the dog. Brit J. Pharmacol 62 (3), 414P-415P.

    CAS  Google Scholar 

  6. Wong PYK., Sun FF. and McGiff JC. (1978): Metabolism of prostacyclin in blood vessels. J. Biol. Chem. 253 (16): 5555–5557.

    CAS  PubMed  Google Scholar 

  7. Sun FF. and Taylor BM. (1978): Metabolism of prostacylin in rat. Biochemistry17, 4096–4099.

    Article  CAS  PubMed  Google Scholar 

  8. Wong PYK., McGiff JC, Cagen L., Malik KU. and Sun FF. (1979): Metabolism of prostacylin in the rabbit kidney. J. Biol. Chem. 254 (1), 12–14.

    CAS  PubMed  Google Scholar 

  9. Wong PYK., McGiff JC, Sun FF. and Malik KU (1978): Pulmonary metabolism of prostacyclin (PGI2) in the rabbit. Biochem Biophys Res Commun 83 (2), 731–738.

    Article  CAS  PubMed  Google Scholar 

  10. Whittle BJR., Moncada S., Whiting F. and Vane JR. (1980): Carbacyclin — potent stable prostacyclin analogue for the inhibition of platelet aggregation. Prostaglandins19, 605–627.

    Article  CAS  PubMed  Google Scholar 

  11. Haberey M., Maass B., Mannesmann G., Skuballa W., Town M.-H. and Vorbrüggen H. (1980): Cardiovascular properties of ZK 36 374, a novel, stable prostacyclin derivative. Therapiewoche 30, 7860–7863.

    Google Scholar 

  12. Rumpf KW., Eisenhauer Th., Lange H., Schenk H.-D., Hilfiker O., Radke A. and Scheler F. (1980): Wirkungen eines stabilen Prostacyclinderivates auf Nieren- und Kreislauffunktion beim Hund. Therapiewoche30, 7887.

    Google Scholar 

  13. Casals-Stenzel J., Haberey H., Loge O., Losert WF., Mannesmann G., Radüchel B., Schillinger E., Skuballa W., Town M.-H., Vorbrüggen H. (1980): Pharmacology of a new potent and stable prostacyclin analogue, ZK 36 374. Acta Therap (Brusses) 6, Suppl. 37.

  14. Hansson C. (1979): Metabolism of two PFG2a analogues in primates: 15(S)-15-methyl-Δ4-cis-PGF and 16,16-dimethyl-Δ4-cis-PGF. Prostaglandins18, 745–771.

    Article  CAS  PubMed  Google Scholar 

  15. Pace-Asciak CR., Rosenthal A. and Domazet Z. (1979): Comparison between the in vivo rate of metabolism of prostaglandin F 2 and its blood-pressure-lowering response after intravenous administration in the rat. Biochim Biophys Acta574, 182–186.

    CAS  PubMed  Google Scholar 

  16. Taylor BM. and Sun FF. (1980): Tissue distribution and biliary excretion of prostacyclin metabolites in the rat. J. Pharm. Ther.214, 24–30.

    CAS  Google Scholar 

  17. Schillinger E., in preparation.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krause, W., Skuballa, W. & Schulze, P.E. Pharmacokinetics and biotransformation of the prostacyclin analogue, ZK 36 374 I. Synthesis of a tritium marker and excretion of [3H]-ZK 36 374 in the rat. European Journal of Drug Metabolism and Pharmacokinetics 8, 137–144 (1983). https://doi.org/10.1007/BF03188739

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03188739

Key words

Navigation