Skip to main content
Log in

Dendritic growth-A test of theory

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Steady-state theories of dendritic solidification are reviewed, and three nonisothermal theories, expressed as simple power laws, are chosen for experimental verification. Specifically, the axial growth rate,V, of a freely growing dendrite can be expressed asV =βGΔθ n, wheren andβ are the exponent and prefactor derived from each theory,G is a lumped material parameter, andΔθ is the supercooling. Succinonitrile, a low entropy-of-fusion plastic crystal, was prepared in several states of purity as the test system, and dendritic growth was studied both in the usual manner in long tubes, and in a novel apparatus in which the conditions for “free” dendritic growth were attained. Kinetic measurements show that only when “free” growth conditions obtain are the data reconcilable with current theory in the form discussed above. In particular, we show thatn = 2.6, in agreement with the theories of Nash and Glicksman and that of Trivedi; however, the prefactorsβ of those theories do not agree with the value determined for succinonitrile, which is the only substance for whichG is known accurately. Tip radius measurements, taken over a relatively narrow range of supercooling, when combined with the growth rate data prove that the Peclet number-supercooling relationship derived for each of the three nonisothermal steady-state theoriesall agree with experiment. This curious agreement, along with the inability to “decompose” the Peclet numbers into acceptable velocity-supercooling and tip radius-supercooling relationships is explained on the basis of the limitations imposed by the steady-state assumption itself. Directions for future theoretical and experimental investigation are discussed in the light of the findings presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Weinberg and B. Chalmers:Can. J. Phys., 1951, vol. 29, p. 382.

    CAS  Google Scholar 

  2. F. Weinberg and B. Chalmers:Can. J. Phys., 1952, vol. 30, p. 488.

    CAS  Google Scholar 

  3. J. C. Fisher: Unpublished research reported inPrinciples ofSolidification, chap. 4, B. Chalmers, John Wiley & Sons, New York, 1964.

    Google Scholar 

  4. C. S. Lindenmeyer and B. Chalmers:J. Chern. Phys., 1966, vol. 45, p. 2807.

    Article  CAS  ADS  Google Scholar 

  5. T. Orrok: Ph.D. Thesis, Harvard University, 1958.

  6. G. F. Bolling and W. A. Tiller:J. Appl. Phys., 1961, vol. 32, p. 2587.

    Article  CAS  ADS  Google Scholar 

  7. G. P. Ivantsov:Dokl. Akild. Nauk USSR, vol. 58, p. 567.

  8. G. Horvay and J. W. Cahn:Acta Met., 1961, vol. 9, p. 695.

    Article  CAS  Google Scholar 

  9. D. E. Temkin:Dokl. Akild. Nauk USSR, vol. 132, p. 1307.

  10. L. A. Tarshis and G. R. Kotlert:J. Cryst. Growth, 1968, vol. 2, p. 222.

    Article  CAS  ADS  Google Scholar 

  11. M. E. Glicksman and R. J. Schaefer:J. Cryst. Growth, 1967, vol. 1, p. 297.

    Article  CAS  ADS  Google Scholar 

  12. M. E. Glicksman and R. J. Schaefer:J. Cryst. Growth, 1968, vol. 2, p. 239.

    Article  CAS  ADS  Google Scholar 

  13. R. Trivedi:Acta Met., vol. 18, p. 287.

  14. E. G. Holtzmann:J. Appl. Phys., 1970, vol. 41, p. 1460.

    Article  ADS  Google Scholar 

  15. E. G. Holtzmann:J. Appl. Phys., 1970, vol. 41, p. 4769.

    Article  ADS  Google Scholar 

  16. G. E. Nash and M. E. Glicksman:Acta Met., 1974, vol. 22, p. 1283.

    Article  CAS  Google Scholar 

  17. R. F. Sekerka, R. G. Seidensticker, D. R. Hamilton, and J. D. Harrison: “Investigation of Desalination by Freezing,”Westinghouse Research Lab Report, chap. 3, 1967.

  18. J. Timmermans:J. Phys. Chern. Solids, 1961, vol. 18, p. 1.

    Article  CAS  ADS  Google Scholar 

  19. W. E. Fitzgerald and G. J. Janz:J. Mol. Spectrosc., 1957, vol. 1, p. 49.

    Article  CAS  ADS  Google Scholar 

  20. Claus A. Wulff and Edgar F. Westrum, Jr.:J. Phys. Chern., 1963, vol. 67, p. 2376.

    Article  CAS  Google Scholar 

  21. J. A. Blodgett, R. J. Schaefer, and M. E. Glicksman:Metallography, 1974, vol. 7. p. 453.

    Article  CAS  Google Scholar 

  22. E. B. Shand:Glass Engineering Handbook, p. 30, McGraw-Hill, New York, 1968.

    Google Scholar 

  23. M. E. Glicksman, J. D. Ayers, and R. J. Schaefer: Unpublished research, NRL,I975.

  24. M. Jakob:Heat Transfer, vol. 1, John Wiley and Sons, New York, 1949.

    Google Scholar 

  25. D. E. Ovsienko, G. A. Alfintsev, and V. V. Maslov:J. Cryst. Growth, 1974, vol. 26, p. 233.

    Article  CAS  ADS  Google Scholar 

  26. R. J. Schaefer, M. E. Glicksman, and J. D. Ayers:Phil. Mag., 1975, vol. 32, p.725.

    Article  CAS  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glicksman, M.E., Schaefer, R.J. & Ayers, J.D. Dendritic growth-A test of theory. Metall Trans A 7, 1747–1759 (1976). https://doi.org/10.1007/BF03186673

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03186673

Keywords

Navigation