Skip to main content
Log in

In situ observation and phase-field simulation on the influence of pressure rate on dendritic growth kinetics in the solidification of succinonitrile

  • Computation
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The influence of pressure rate on dendritic growth kinetics in solidification of succinonitrile was studied via in situ observation based on a novel apparatus established in our previous work and using phase-field modeling where a pressure term associated with pressure rate was introduced. The experimental and simulation results revealed that dendrites grew much faster at higher pressure rate, resulting in dendrites characterized by more developed secondary arms and larger secondary dendrite arm spacing (SDAS), while dendrites growing at lower pressure rate was more cellular-like with small secondary arms. Higher pressure rate facilitated the competitive growth of dendrites, which led to fewer but larger dominate primary dendrites and larger primary dendrite arm spacing (PDAS) in the final microstructure. The cellular-to-dendrite transition (CDT) was more advanced at higher pressure rate, and it was demonstrated that it was the higher pressure rate not the high value of pressure that motivated CDT, via elevating effective undercooling and thus growth velocity at CDT moment. Furthermore, the growth kinetics was analyzed quantitatively, and the variation of tip velocity at different pressure rates was consistent with that of the corresponding undercooling induced by pressure and thermal condition. Moreover, the slope of growth and re-melting velocity—the tip acceleration—increased with pressure-rising rate and pressure-declining rate, respectively, even in a complicated periodic pattern, which was qualitatively consistent with the theoretical relationship of tip acceleration and pressure rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

References

  1. Sachdeva D, Tiwari S, Sundarraj S, Luo AA (2010) Microstructure and corrosion characterization of squeeze cast AM50 magnesium alloys. Metall Mater Trans B 41:1375–1383

    Article  CAS  Google Scholar 

  2. Masoumi M, Hu H (2011) Influence of applied pressure on microstructure and tensile properties of squeeze cast magnesium Mg–Al–Ca alloy. Mater Sci Eng A 528:3589–3593

    Article  Google Scholar 

  3. Ghomashchi MR, Vikhrov A (2000) Squeeze casting: an overview. J Mater Process Technol 101:1–9

    Article  Google Scholar 

  4. Han Z, Pan H, Li Y, Luo AA, Sachdev AK (2015) Study on pressurized solidification behavior and microstructure characteristics of squeeze casting magnesium alloy AZ91D. Metall Mater Trans B 46:328–336

    Article  CAS  Google Scholar 

  5. Xu R (2005) The effect of high pressure on solidification microstructure of Al–Ni–Y alloy. Mater Lett 59:2818–2820

    Article  CAS  Google Scholar 

  6. Sobczak JJ, Drenchev L, Asthana R (2012) Effect of pressure on solidification of metallic materials. Int J Cast Metal Res 25:1–14

    Article  CAS  Google Scholar 

  7. Jie J, Zou C, Brosh E, Wang H, Wei Z, Li T (2013) Microstructure and mechanical properties of an Al–Mg alloy solidified under high pressures. J Alloy Compd 578:394–404

    Article  CAS  Google Scholar 

  8. Pan H, Han Z, Liu B (2016) Study on dendritic growth in pressurized solidification of Mg–Al alloy using phase field simulation. J Mater Sci Technol 32:68–75

    Article  Google Scholar 

  9. Börzsönyi T, Tóth-Katona T, Buka Á, Gránásy L (1999) Dendrites regularized by spatially homogeneous time-periodic forcing. Phys Rev Lett 83:2853–2856

    Article  Google Scholar 

  10. Shang S, Guo Z, Han Z (2016) On the kinetics of dendritic sidebranching: a three dimensional phase field study. J Appl Phys 119:164305

    Article  Google Scholar 

  11. Shang S, Han Z, Sun W, Luo AA (2017) A phase field model coupled with pressure-effect-embedded thermodynamic modeling for describing microstructure and microsegregation in pressurized solidification of a ternary magnesium alloy. Comput Mater Sci 136:264–270

    Article  CAS  Google Scholar 

  12. Han Z, Huang X, Luo AA, Sachdev AK, Liu B (2012) A quantitative model for describing crystal nucleation in pressurized solidification during squeeze casting. Scr Mater 66:215–218

    Article  CAS  Google Scholar 

  13. Börzsönyi T, Tóth-Katona T, Buka Á, Gránásy L (2000) Regular dendritic patterns induced by nonlocal time-periodic forcing. Phys Rev E 62:7817–7827

    Article  Google Scholar 

  14. Wang F, Ma Q, Meng W, Han Z (2017) Experimental study on the heat transfer behavior and contact pressure at the casting-mold interface in squeeze casting of aluminum alloy. Int J Heat Mass Tran 112:1032–1043

    Article  CAS  Google Scholar 

  15. Trivedi R, Somboonsuk K (1985) Pattern formation during the directional solidification of binary systems. Acta Metall 33:1061–1068

    Article  CAS  Google Scholar 

  16. Jackson KA, Hunt JD (1965) Transparent compounds that freeze like metals. Acta Metall 13:1212–1215

    Article  CAS  Google Scholar 

  17. Cummins HZ, Qian XW (1990) Dendritic sidebranching initiation by a localized heat pulse. Phys Rev Lett 64:3038–3041

    Article  Google Scholar 

  18. Farup I, Drezet JM, Rappaz M (2001) In situ observation of hot tearing formation in succinonitrile–acetone. Acta Mater 49:1261–1269

    Article  CAS  Google Scholar 

  19. Koss MB, LaCombe JC, Tennenhouse LA, Glicksman ME, Winsa EA (1999) Dendritic growth tip velocities and radii of curvature in microgravity. Metall Mater Trans A 30:3177–3190

    Article  Google Scholar 

  20. Reinhart G, Buffet A, Nguyen-Thi H, Billia B, Jung H, Mangelinck-Noël N, Bergeon N, Schenk T, Härtwig J, Baruchel J (2008) In-situ and real-time analysis of the formation of strains and microstructure defects during solidification of Al-3.5 wt Pct Ni alloys. Metall Mater Trans A 39:865–874

    Article  Google Scholar 

  21. Limodin N, Salvo L, Boller E, Suéry M, Felberbaum M, Gailliègue S, Madi K (2009) In situ and real-time 3-D microtomography investigation of dendritic solidification in an Al–10 wt% Cu alloy. Acta Mater 57:2300–2310

    Article  CAS  Google Scholar 

  22. Nguyen-Thi H, Salvo L, Mathiesen RH, Arnberg L, Billia B, Suery M, Reinhart G (2012) On the interest of synchrotron X-ray imaging for the study of solidification in metallic alloys. C R Phys 13:237–245

    Article  CAS  Google Scholar 

  23. Cai B, Wang J, Kao A, Pericleous K, Phillion AB, Atwood RC, Lee PD (2016) 4D synchrotron X-ray tomographic quantification of the transition from cellular to dendrite growth during directional solidification. Acta Mater 117:160–169

    Article  CAS  Google Scholar 

  24. Sawada T, Takemura K, Shigematsu K, Yoda S, Kawasaki K (1996) Dynamic pressure control for solution growth and its microgravity application. J Cryst Growth 158:328–335

    Article  CAS  Google Scholar 

  25. Sawada T, Takemura K, Shigematsu K, Yoda S, Kawasaki K (1998) Effects of gravity on a free dendrite of NH4Cl grown by dynamic pressure control. J Cryst Growth 191:225–233

    Article  CAS  Google Scholar 

  26. LaCombe JC, Koss MB, Tennenhouse LA, Winsa EA, Glicksman ME (1998) The Clapeyron effect in succinonitrile: applications to crystal growth. J Cryst Growth 194:143–148

    Article  CAS  Google Scholar 

  27. Kar P, LaCombe JC, Koss MB (2004) Velocity and radius transients during pressure mediated dendritic growth of succinonitrile. Mater Sci Technol Lond 20:1273–1280

    Article  CAS  Google Scholar 

  28. Koss MB, LaCombe JC, Chait A, Pines V, Zlatkowski M, Glicksman ME, Kar P (2005) Pressure-mediated effects on thermal dendrites. J Cryst Growth 279:170–185

    Article  CAS  Google Scholar 

  29. Sazaki G, Nagatoshi Y, Suzuki Y, Durbin SD, Miyashita S, Nakada T, Komatsu H (1999) Solubility of tetragonal and orthorhombic lysozyme crystals under high pressure. J Cryst Growth 196:204–209

    Article  CAS  Google Scholar 

  30. Provatas N, Elder K (2011) Phase-field methods in materials science and engineering. Wiley, Weinheim

    Google Scholar 

  31. Kim SG (2007) A phase-field model with antitrapping current for multicomponent alloys with arbitrary thermodynamic properties. Acta Mater 55:4391–4399

    Article  CAS  Google Scholar 

  32. Karma A (2001) Phase-field formulation for quantitative modeling of alloy solidification. Phys Rev Lett 87:115701

    Article  CAS  Google Scholar 

  33. Han G, Han Z, Luo AA, Liu B (2015) Three-dimensional phase-field simulation and experimental validation of β-Mg17Al12 phase precipitation in Mg-Al-based alloys. Metall Mater Trans A 46:948–962

    Article  CAS  Google Scholar 

  34. Zhu J, Liu Z, Vaithyanathan V, Chen L (2002) Linking phase-field model to CALPHAD: application to precipitate shape evolution in Ni-base alloys. Scr Mater 46:401–406

    Article  CAS  Google Scholar 

  35. Liu H, Gao Y, Zhu Y, Wang Y, Nie J (2014) A simulation study of β1 precipitation on dislocations in an Mg–rare earth alloy. Acta Mater 77:133–150

    Article  CAS  Google Scholar 

  36. Xing H, Ankit K, Dong X, Chen H, Jin K (2018) Growth direction selection of tilted dendritic arrays in directional solidification over a wide range of pulling velocity: a phase-field study. Int J Heat Mass Transf 117:1107–1114

    Article  Google Scholar 

  37. Xing H, Zhang L, Song K, Chen H, Jin K (2017) Effect of interface anisotropy on growth direction of tilted dendritic arrays in directional solidification of alloys: insights from phase-field simulations. Int J Heat Mass Transf 104:607–614

    Article  CAS  Google Scholar 

  38. Yang C, Xu Q, Liu B (2018) Primary dendrite spacing selection during directional solidification of multicomponent nickel-based superalloy: multiphase-field study. J Mater Sci 53:9755–9770. https://doi.org/10.1007/s10853-018-2236-1

    Article  CAS  Google Scholar 

  39. Tourret D, Karma A (2015) Growth competition of columnar dendritic grains: a phase-field study. Acta Mater 82:64–83

    Article  CAS  Google Scholar 

  40. Tourret D, Song Y, Clarke AJ, Karma A (2017) Grain growth competition during thin-sample directional solidification of dendritic microstructures: a phase-field study. Acta Mater 122:220–235

    Article  CAS  Google Scholar 

  41. Shang S, Han Z, Luo AA (2018) Phase-field modelling on effect of pressure on growth kinetics of Mg–Al–Sn alloy. Mater Sci Technol Lond 34:1362–1369

    Article  CAS  Google Scholar 

  42. Shang S, Han Z, Luo AA (2018) Study on the response of dendritic growth to periodic increase-decrease pressure in solidification via in situ observation using succinonitrile. J Cryst Growth 498:85–92

    Article  CAS  Google Scholar 

  43. Seah KHW, Hemanth J, Sharma SC (1998) Effect of the cooling rate on the dendrite arm spacing and the ultimate tensile strength of cast iron. J Mater Sci 33:23–28. https://doi.org/10.1023/A:1004321007806

    Article  CAS  Google Scholar 

  44. Boschetto A, Costanza G, Quadrini F, Tata ME (2007) Cooling rate inference in aluminum alloy squeeze casting. Mater Lett 61:2969–2972

    Article  CAS  Google Scholar 

  45. Karma A, Rappel W (1998) Quantitative phase-field modeling of dendritic growth in two and three dimensions. Phys Rev E 57:4323–4349

    Article  CAS  Google Scholar 

  46. Echebarria B, Folch R, Karma A, Plapp M (2004) Quantitative phase-field model of alloy solidification. Phys Rev E 70:61604

    Article  Google Scholar 

  47. Ananth R, Gill WN (1997) Dendritic growth in microgravity and forced convection. J Cryst Growth 179:263–276

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China [Grant Number U1737208]. The authors would also like to thank the National Laboratory for Information Science and Technology at Tsinghua University for access to supercomputing facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiqiang Han.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shang, S., Han, Z. In situ observation and phase-field simulation on the influence of pressure rate on dendritic growth kinetics in the solidification of succinonitrile. J Mater Sci 54, 3111–3124 (2019). https://doi.org/10.1007/s10853-018-3074-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-3074-x

Keywords

Navigation