Skip to main content
Log in

Recent progress in polymer-based gene delivery vectors

  • Reviews
  • Published:
Chinese Science Bulletin

Abstract

The gene delivery system is one of the three components of a gene medicine, which is the bottle neck of current gene therapy. Nonviral vectors offer advantages over the viral system of safety, ease of manufacturing, etc. As important nonviral vectors, polymer gene delivery systems have gained increasing attention and have begun to show increasing promising. In this review, the fundamental and recent progress of polymer-based gene delivery vectors is reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Culver, K. W., Gene Therapy: A Primer for Physician, Larchmont: Mary Ann Liebert, Inc., 1996.

    Google Scholar 

  2. Mahato, R. I., Smith, L. C., Rolland, A., Pharmaceutical perspective of nonviral gene therapy, Adv. Genet., 1999, 41: 95–156.

    Article  Google Scholar 

  3. Lehrman, S., Virus treatment questioned after gene therapy death, Nature, 1999, 401: 517–518.

    Article  Google Scholar 

  4. Mashall, E., Gene therapy death promotes review of adenovirus vectors, Science, 1999, 286: 2244–2245.

    Article  Google Scholar 

  5. Anderson, W. F., Human gene therapy, Nature, 1998, 392(Supp): 25–30.

    Article  Google Scholar 

  6. Rolland, A. P., Mumper, R. J., Plasmid delivery to muscle: Recent advances in polymer delivery systems, Adv. Drug. Deliv. Rev., 1998, 30(1–3): 151–172.

    Google Scholar 

  7. Lee, R. J., Huang, L., Lipidic vector systems for gene transfer, Crit. Rev. Ther. Drug Carrier Syst., 1997, 14(2): 173–206.

    Google Scholar 

  8. Luo, D., Saltzman, M., Synthetic DNA delivery systems, Nat. Biotech., 2000, 18: 33–37.

    Article  Google Scholar 

  9. Nakanishi, M., Akuta, T., Nagoshi, E. et al., Nuclear targeting of DNA, Eur. J. Pharm. Sci., 2001, 13: 17–24.

    Article  Google Scholar 

  10. Rolland, A. P., From genes to gene medicine: Recent advances in nonviral gene delivery, Crit. Rev. Ther. Drug Carrier Syst., 1998, 15: 143–198.

    Google Scholar 

  11. Han, S., Mahato, R. I., Sung, Y. K., Development of biomaterials for gene therapy, Mol. Ther., 2000, 2(4): 302–317.

    Article  Google Scholar 

  12. Boussif, O., Lezoualc’h, F., Zanta, M. A. et al., A versatile vector for gene and oligonucleotide transfer into cells in culture andin vivo: Polyethylenimine, Proc. Natl. Acad. Sci. USA 1995, 92(16): 7297–7301.

    Article  Google Scholar 

  13. Lemkine, G. F., Demeneix, B. A., Polyethylenimines forin vivo gene delivery, Curr. Opin. Mol. Ther., 2001, 3(2): 178–182.

    Google Scholar 

  14. Godbey, W. T., Wu, K. K., Mikos, A. G., Poly(ethylenimine) and its role in gene delivery, J. Control Release, 1999, 60(2–3): 149–160.

    Article  Google Scholar 

  15. Haensler, J., Szoka, F. C. Jr., Polyamidoamine cascade polymers mediate efficient transfection of cells in culture, Bioconjug. Chem., 1993, 4(5): 372–379.

    Article  Google Scholar 

  16. Kukowska-Latallo, J. F., Bielinska, A. U., Johnson, J. et al., Efficient transfer of genetic material into mammalian cells using Starburst polyamidoamine dendrimers, Proc. Natl. Acad. Sci. USA, 1996, 93(10): 4897–4902.

    Article  Google Scholar 

  17. Esfand, R., Tomalia, D. A., Poly(amidoamine) (PAMAM) dendrimers: from biomimicry to drug delivery and biomedical applications, Drug Discov. Today, 2001, 6(8): 427–436.

    Article  Google Scholar 

  18. Leong, K. W., Mao, H. Q., Truong-Le, V. L. et al., DNA-polycation nanospheres as non-viral gene delivery vehicles, J. Control Release, 1998, 53(1–3): 183–193.

    Article  Google Scholar 

  19. Roy, K., Mao, H. Q., Huang, S. K. et al., Oral gene delivery with chitosan—DNA nanoparticles generates immunologic protection in a murine model of peanut allergy, Nat. Med., 1999, 5(4): 387–391.

    Article  Google Scholar 

  20. Borchard, G., Chitosans for gene delivery, Adv. Drug Deliv. Rev., 2001, 52(2): 145–150.

    Article  Google Scholar 

  21. Truong-Le, V. L., Walsh, S. M., Schweibert, E., Gene transfer by DNA-gelatin nanospheres, Arch Biochem. Biophys., 1999, 361(1): 47–56.

    Article  Google Scholar 

  22. Pichon, C., Goncalves, C., Midoux, P., Histidine-rich peptides and polymers for nucleic acids delivery, Adv. Drug Deliv. Rev., 2001, 53(1): 75–94.

    Article  Google Scholar 

  23. Lim, Y. B., Han, S. O., Kong, H. U., Biodegradable polyester, poly[α-(4-aminobutyl)-L-glycolic acid], as a non-toxic gene carrier, Pharm. Res., 2000, 17(7): 811–816.

    Article  Google Scholar 

  24. Wang, J., Mao, H. Q., Leong, K. W., A novel biodegradable gene carrier based on polyphosphoester, J. Am. Chem., Soc., 2001, 123(38): 9480–9481.

    Article  Google Scholar 

  25. Kabanov, A. V., Astafieva, I. V., Maksimova, I. Y., Efficient transformation of mammalian cells using DNA interpolyelectrolyte complexes with carbon chain polycations, Bioconjug. Chem., 1993, 4(6): 448–454.

    Article  Google Scholar 

  26. Cherng, J. Y., van de Wetering, P., Talsma, H., Effect of size and serum proteins on transfection efficiency of poly((2-dimethylamino)ethyl methacrylate)-plasmid nanoparticles, Pharm. Res., 1996, 13(7): 1038–1042.

    Article  Google Scholar 

  27. Varga, C. M., Wickham, T. J., Lauffenburger, D. A., Receptor-mediated targeting of gene delivery vectors: Insights from molecular mechanisms for improved vehicle design, Biotechnol. Bioeng., 2000, 70(6): 593–605.

    Article  Google Scholar 

  28. Wagner, E., Ogris, M., Zauner, W., Polylysine-based transfection systems utilizing receptor-mediated delivery, Adv. Drug Deliv. Rev., 1998, 30(1–3): 97–113.

    Google Scholar 

  29. McKee, T. D., DeRome, M. E., Wu, G. Y., Preparation of asialoorosomucoid-polylysine conjugates, Bioconjug. Chem., 1994, 5(4): 306–311.

    Article  Google Scholar 

  30. Zanta, M. A., Boussif, O., Adib, A. et al.,In vitro gene delivery to hepatocytes with galactosylated polyethylenimine, Bioconjug. Chem., 1997, 8(6): 839–844.

    Article  Google Scholar 

  31. Hashida, M., Takemura, S., Nishikawa, M. et al., Targeted delivery of plasmid DNA complexed with galactosylated poly(Llysine), J. Control Release, 1998, 53(1–3): 301–310.

    Article  Google Scholar 

  32. Nishikawa, M., Takemura, S., Takakura, Y. et al., Targeted delivery of plasmid DNA to hepatocytesin vivo: optimization of the pharmacokinetics of plasmid DNA/galactosylated poly(L-lysine) complexes by controlling their physicochemical properties, J. Pharmacol. Exp. Ther., 1998, 287(1): 408–415.

    Google Scholar 

  33. Diebold, S. S., Kursa, M., Wagner, E. et al., Mannose polyethylenimine conjugates for targeted DNA delivery into dendritic cells, J. Biol. Chem., 1999, 274(27): 19087–19094.

    Article  Google Scholar 

  34. Nishikawa, M., Takemura, S., Yamashita, F. et al., Pharmacokinetics andin vivo gene transfer of plasmid DNA complexed with mannosylated poly(L-lysine) in mice. J. Drug Target, 2000, 8(1): 29–38.

    Article  Google Scholar 

  35. Wightman, L., Patzelt, E., Wagner, E. et al., Development of transferrinpolycation/DNA based vectors for gene delivery to melanoma cells, J. Drug Target, 1999, 7(4): 293–303.

    Article  Google Scholar 

  36. Benns, J. M., Maheshwari, A., Furgeson, D. Y. et al., FolatePEG-folate-graft-polyethylenimine-based gene delivery, J. Drug Target, 2001, 9(2): 123–139.

    Article  Google Scholar 

  37. Ward, C. M., Folate-targeted non-viral DNA vectors for cancer gene therapy, Curr. Opin. Mol. Ther., 2000, 2(2): 182–187.

    Google Scholar 

  38. Kircheis, R., Blessing, T., Brunner, S. et al., Tumor targeting with surface-shielded ligand—polycation DNA complexes, J. Control Release, 2001, 72(1–3): 165–170.

    Article  Google Scholar 

  39. Blessing, T., Kursa, M., Holzhauser, R. et al., Different strategies for formation of pegylated EGF-conjugated PEI/DNA complexes for targeted gene delivery. Bioconjug. Chem., 2001, 12(4): 529–537.

    Article  Google Scholar 

  40. Suh, W., Chung, J. K., Park, S. H. et al., Anti-JL1 antibody-conjugated poly (L-lysine) for targeted gene delivery to leukemia T cells, J. Control Release, 2001, 72(1–3): 171–178.

    Article  Google Scholar 

  41. Feigner, P. L., Gadek, T. R., Holm, M. et al., Lipofection—a highly efficient, lipid-mediated DNA-transfection procedure, Proc. Natl. Acad. Sci. USA, 1987, 84: 7413–7417.

    Article  Google Scholar 

  42. Brown, M. D., Schätzlein, A., Brownlie, A. et al., Preliminary charaterization novel amino acid based polymeric vesicles as gene and drug delivery agents, Bioconjugate Chem., 2000, 11: 880–891.

    Article  Google Scholar 

  43. Madeson, S. K., Mooney, D. J., Delivery DNA with polymer matrices: Application in tissue engineering and gene therapy, Pharm. Sci. Tech. Today, 200, 3: 381–384.

  44. Fang, J., Zhu, Y. Y., Smiley, E. et al., Stimulation of new bone formation by direct transfer of osteogenic plasmid genes, Proc. Natl. Acad. Sci. USA, 1996, 93: 5753–5758.

    Article  Google Scholar 

  45. Labhasetwar, V., Nonadio, J., Goldstein, S. et al., A DNA controlled-release coating for gene transfer: Transfection in skeletal and cardiac muscle, J. Pharm. Sci., 1998, 87: 1347–1350.

    Article  Google Scholar 

  46. Shea, L. D., Smiley, E., Bonadio, J. et al., DNA delivery from polymer matrices for tissue engineering, Nat. Biotechnol, 1999, 17: 551–554.

    Article  Google Scholar 

  47. Cohen, H., Levy, R. J., Gao, J. et al., Sustain delivery and expression of DNA encapsulated polymeric nanoparticles, Gene Ther., 2000, 7: 1896–1905.

    Article  Google Scholar 

  48. Page, D. T., Cudmore, S., Innovations in oral gene delivery: Challenges and potentials, Drug Disc. Today, 2001, 6(2): 92–101.

    Article  Google Scholar 

  49. Mathiowitz, E., Jacob, J. S., Jong, Y. S. et al., Biologically erodable microspheres as potential oral drug delivery systems, Nature, 1997, 386: 410–414.

    Article  Google Scholar 

  50. Singh, M., Briones, M., Ott, G. et al., Cationic microparticles: A potent delivery system for DNA vaccines, Proc. Natl. Acad. Sci. USA, 2000, 97(2): 811–816.

    Article  Google Scholar 

  51. Beer, S. J., Matthews, C. B., Stein, C. S. et al., Poly(lactic-glycolic) acid copolymer encapsulation of recombinant adenovirus reduces immunogenecityin vivo, Gene Ther., 1998, 5: 740–746.

    Article  Google Scholar 

  52. Wolf, G. A., Malone, R. W., Williams, P. et al., Direct gene transfer into mouse musclein vivo, Science, 1990, 247: 1465–1468.

    Article  Google Scholar 

  53. Hagstrom, J. E., Ribakova, I. N., Staeva, T. et al., Non-nuclear DNA binding proteins in striated muscle, Biochem. Mol. Med., 1996, 58: 113–121.

    Article  Google Scholar 

  54. Mumper, R. J., Wang, J., Klakamp, S. L. et al., Protective interactive noncondensing (PINC) polymers for enhanced plasmid distribution and expression in rat skeletal muscle, J. Control Release, 1998, 52(1–2): 191–203.

    Article  Google Scholar 

  55. Lemieux, P., Guérin, N., Paradis, R. et al., A combination of poloxamers increases gene expression of plasmid DNA in skeletal muscle, Gene Ther., 2000, 7: 986–991.

    Article  Google Scholar 

  56. Huang, S. W., Wang, J., Mao, H. Q. et al., Nonionic, water-soluble and biodegradable polyphosphoester: synthesis,in vitro degradation and enhancing the gene expression in mouse muscle, IUPAC World Polymer Congress Preprints. Beijing, July 2002, 978.

  57. Zuber, G., Dauty, E., Nothisen, M. et al., Towards synthetic viruses, Adv. Drug Del., Review, 2001, 52: 245–253.

    Article  Google Scholar 

  58. Ferber, B., Gene therapy: Safer and virus-free? Sciences, 2001, 294: 1638–1642.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renxi Zhuo.

About this article

Cite this article

Huang, S., Zhuo, R. Recent progress in polymer-based gene delivery vectors. Chin.Sci.Bull. 48, 1304–1309 (2003). https://doi.org/10.1007/BF03184167

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03184167

Keywords

Navigation