Skip to main content

Polymeric Carriers for Transporting Nucleic Acids—Contributions to the Field

  • Chapter
  • First Online:
New Trends in Macromolecular and Supramolecular Chemistry for Biological Applications

Abstract

In order to correct the genetic defects that are fundamental reasons for many pathologies, gene therapy uses exogenous nucleic acids for intentional modulation of gene expression in specific cells. Due to the large size and the negative charge of exogenous nucleic acids, the delivery of these macromolecules is typically mediated by carriers or vectors. Viral carriers are known to be very efficient however, they have a severe drawbacks such as toxicity and immunogenicity. In this regard, gene-based therapy using non-viral approaches has drawn increasing attention, and has become an important field of research. The diversity of materials used as of non-viral vectors known today highlights the recent progress of gene-based therapy using non-viral approaches. Herein, we describe the progress made by our group in the development of hybrid vectors that combine key features of classical carriers design rationally or formed by combinatorial approach using dynamic chemistry which are remarkable strategies to address the current challenges in gene delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

pDNA:

Plasmid DNA

siRNA:

Small interfering RNA

β-CD:

β-Cyclodextrin

bPEI:

Branched poly(ethyleneimine)

PEG:

Poly(ethylene glycol)

pLuc:

Luciferase plasmid

pGFP:

Green fluorescent protein plasmid

CDC:

Constitutional dynamic chemistry

DCF:

Dynamical constitutional frameworks

dsDN:

Duble stranded DNA

TE:

Transfection efficiency

Girard’s reagent T:

(Carboxymethyl)trimethylammonium chloride hydrazide

HeLa:

Human cervix adenocarcinoma

DF:

Dynameric frameworks

HEK 293T:

Human embryonic kidney 293T cells

pEGFP:

Enhanced green fluorescent protein plasmid

N/P:

Nitrogen/phosphorus

AFM:

Atomic force microscopy

References

  • Ailincai D, Marin L, Morariu S et al (2016) Dual crosslinked iminoboronate-chitosan hydrogels with strong antifungal activity against Candida planktonic yeasts and biofilms Carbohyd Polym 152:306–316

    Google Scholar 

  • Ailincai D, Tartau Mititelu L, Marin L (2018) Drug delivery systems based on biocompatible imino-chitosan hydrogels for local anticancer therapy. Drug Deliv. 25(1):1080–1090

    Article  CAS  Google Scholar 

  • Ailincai D, Peptanariu D, Pinteala M et al (2019) Dynamic constitutional chemistry towards efficient nonviral vectors Mater Sci Eng C 94:635–646

    Google Scholar 

  • Ardeleanu R, Dascalu AI, Neamtu A et al (2018) Multivalent polyrotaxane vectors as adaptive cargo complexes for gene therapy. Polym Chem 9(7):845–859

    Article  CAS  Google Scholar 

  • Bainbridge JWB, Tan MH, Ali RR (2006) Gene therapy progress and prospects: the eye. Gene Ther 13(16):1191–1197

    Article  CAS  Google Scholar 

  • Banks WA (2009) Characteristics of compounds that cross the blood-brain barrier. BMC Neurol 9(1):S3

    Article  Google Scholar 

  • Cam C, Segura T (2013) Matrix-based gene delivery for tissue repair. Curr Opin Biotech 24(5):855–863

    Article  CAS  Google Scholar 

  • Catana R, Barboiu M, Moleavin I et al (2015) Dynamic constitutional frameworks for DNA biomimetic recognition. Chem Commun 51(11):2021–2024

    Article  CAS  Google Scholar 

  • Clima L, Peptanariu D, Pinteala M et al (2015) DyNAvectors: dynamic constitutional vectors for adaptive DNA transfection. Chem Commun 51(99):17529–17531

    Google Scholar 

  • Clima L, Craciun BF, Gavril G et al (2019) Tunable composition of dynamic non-viral vectors over the DNA polyplex formation and nucleic acid transfection. Polymers 11(8):1313

    Article  CAS  Google Scholar 

  • Couvreur P (2009) “Squalenoylation”: a new approach to the design of anticancer and antiviral nanomedicines. B Acad Nat Med Paris 193(3):663–673

    Google Scholar 

  • Craciun BF, Vasiliu T, Marangoci N et al (2018) Pegylated squalene: a biocomptible polymer as precursor for drug delivery. Rev Roum Chim 63(7–8):621–628

    Google Scholar 

  • Craciun FB, Gavril G, Peptanariu D et al (2019) synergistic effect of low molecular weight polyethylenimine and polyethylene glycol components in dynamic nonviral vector structure, toxicity, and transfection efficiency. Molecules 24(8)

    Google Scholar 

  • Dascalu AI, Ardeleanu R, Neamtu A et al (2017) Transfection-capable polycationic nanovectors which include PEGylated-cyclodextrin structural units: a new synthesis pathway. J Mater Chem B 5(34):7164–7174

    Article  CAS  Google Scholar 

  • Desmaele D, Gref R, Couvreur P (2012) Squalenoylation: a generic platform for nanoparticular drug delivery. J Control Release 161(2):609–618

    Google Scholar 

  • Dunbar CE, High KA, Joung JK et al (2018) Gene therapy comes of age. Science 359(6372):eaan4672

    Google Scholar 

  • Egger G, Liang G, Aparicio A et al (2004) Epigenetics in human disease and prospects for epigenetic therapy. Nature 429(6990):457–463

    Article  CAS  Google Scholar 

  • Elouahabi A, Ruysschaert J-M (2005) Formation and intracellular trafficking of lipoplexes and polyplexes. Mol Ther 11(3):336–347

    Article  CAS  Google Scholar 

  • Finbloom JA, Sousa F, Stevens MM et al (2020) Engineering the drug carrier biointerface to overcome biological barriers to drug delivery. Adv Drug Deliv Rev 167:89–108

    Google Scholar 

  • Funhoff AM, van Nostrum CF, Koning GA et al (2004) Endosomal escape of polymeric gene delivery complexes is not always enhanced by polymers buffering at low pH. Biomacromol 5(1):32–39

    Article  CAS  Google Scholar 

  • Ginn SL, Amaya AK, Alexander IE et al (2018) Gene therapy clinical trials worldwide to 2017: an update. J Gene Med 20(5):e3015

    Article  Google Scholar 

  • Godbey WT, Barry MA, Saggau P et al (2000) Poly(ethylenimine)-mediated transfection: a new paradigm for gene delivery Journal of Biomedical Materials Research 51(3):321–328

    Google Scholar 

  • Gordon R, Ranjith R, Leighann S et al (2012) Fungal Biofilm resistance. Int J Microbiol 2012

    Google Scholar 

  • Hanna E, Rémuzat C, Auquier P et al (2017) Gene therapies development: slow progress and promising prospect. J Mark Access Health Policy 5(1):1265293

    Google Scholar 

  • Harada A, Okada M, Kawaguchi Y et al (1999) Macromolecular recognition: new cyclodextrin polyrotaxanes and molecular tubes. Polym Adv Technol 10(1–2):3–12

    Article  CAS  Google Scholar 

  • Hedman M, Hartikainen J, Ylä-Herttuala S (2011) Progress and prospects: hurdles to cardiovascular gene therapy clinical trials. Gene Ther 18(8):743–749

    Article  CAS  Google Scholar 

  • Jiří V, Edward SW, Andrey Y et al (2012) Terminology and nomenclature for macromolecular rotaxanes and pseudorotaxanes (IUPAC Recommendations 2012). Pure Appl Chem 84(10):2135–2165

    Article  Google Scholar 

  • Kumar V, Qin J, Jiang Y et al (2014) Shielding of lipid nanoparticles for sirna delivery: impact on physicochemical properties, cytokine induction, and efficacy. Mol Ther Nucleic Acids 3(11):e210-e

    Google Scholar 

  • Kursa M, Walker GF, Roessler V et al (2003) Novel shielded transferrin−polyethylene glycol−polyethylenimine/DNA complexes for systemic tumor-targeted gene transfer. Bioconjug Chem 14(1):222–231

    Google Scholar 

  • Lehn J-M (2012) Constitutional dynamic chemistry. Barboiu M (ed.) Springer, Heidelberg, p 1–32

    Google Scholar 

  • Lepeltier E, Bourgaux C, Rosilio V et al (2013) Self-assembly of squalene-based nucleolipids: relating the chemical structure of the bioconjugates to the architecture of the nanoparticles. Langmuir 29(48):14795–14803

    Article  CAS  Google Scholar 

  • Marin L, Ailincai D, Cahn M et al (2016) Dynameric frameworks for DNA transfection. ACS Biomater Sci Eng 2(1):104–111

    Article  CAS  Google Scholar 

  • Müller MM, Muir TW (2015) Histones: at the crossroads of peptide and protein chemistry. Chem Rev 115(6):2296–2349

    Article  Google Scholar 

  • Muramatsu S (2018) Gene therapy using adeno-associated virus vectors Cancer Sci 109(1200-.

    Google Scholar 

  • Neu M, Fischer D, Kissel T (2005) Recent advances in rational gene transfer vector design based on poly(ethylene imine) and its derivatives. J Gene Med 7(8):992–1009

    Article  CAS  Google Scholar 

  • Neuberg P, Kichler A (2014) Advances in genetics. Huang L et al (eds) Academic Press, vol 88, pp 263–288

    Google Scholar 

  • Olanow CW (2014) Gene therapy for Parkinson disease—a hope, or a dream? Nat Rev Neurol 10(4):186–187

    Article  CAS  Google Scholar 

  • Olden BR, Cheng YL, Yu JL et al (2018) Cationic polymers for non-viral gene delivery to human T cells. J Control Release 282:140–147

    Google Scholar 

  • Papadopoulos KI, Wattanaarsakit P, Prasongchean W et al (2016) Polymers and nanomaterials for gene therapy. Narain R (ed) Woodhead Publishing, p 231–56

    Google Scholar 

  • Paul A, Eun CJ, Song JM (2014) Cytotoxicity mechanism of non-viral carriers polyethylenimine and poly-L-lysine using real time high-content cellular assay. Polymer 55(20):5178–5188

    Article  CAS  Google Scholar 

  • Pricope G, Pinteala M, Clima L (2018) Dynamic self-organazing systems for DNA delivery. Rev Roum Chim 63(7–8):613–619

    Google Scholar 

  • Semenza GL (2003) Targeting HIF-1 for cancer therapy. Nat Rev Cancer 3(10):721–732

    Article  CAS  Google Scholar 

  • Simionescu BC, Drobota M, Timpu D et al (2017) Biopolymers/poly(epsilon-caprolactone)/polyethylenimine functionalized nano-hydroxyapatite hybrid cryogel: Synthesis, characterization and application in gene delivery. Mat Sci Eng C-Mater 81:167–176

    Google Scholar 

  • Smith AJ, Bainbridge JWB, Ali RR (2012) Gene supplementation therapy for recessive forms of inherited retinal dystrophies. Gene Ther 19(2):154–161

    Article  CAS  Google Scholar 

  • Somia N, Verma IM (2000) Gene therapy: trials and tribulations. Nat Rev. Genet 1(2):91–99

    Article  CAS  Google Scholar 

  • Suk JS, Xu Q, Kim N et al. (2016) PEGylation as a strategy for improving nanoparticle-based drug and gene delivery Adv Drug Deliver Rev 99:28–51

    Google Scholar 

  • Thapa B, Narain R (2016) Polymers and nanomaterials for gene therapy. Narain R (ed) Woodhead Publishing, p 1–27

    Google Scholar 

  • Tierney EG, Duffy GP, Cryan SA et al (2013) Non-viral gene-activated matrices next generation constructs for bone repair. Organogenesis 9(1):22–28

    Article  Google Scholar 

  • Turin-Moleavin IA, Doroftei F, Coroaba A et al (2015) Dynamic constitutional frameworks (DCFs) as nanovectors for cellular delivery of DNA. Org Biomol Chem 13(34):9005–9011

    Google Scholar 

  • Uritu CM, Varganici CD, Ursu L et al (2015) Hybrid fullerene conjugates as vectors for DNA cell-delivery. J Mater Chem B 3(12):2433–2446

    Article  CAS  Google Scholar 

  • Uritu CM, Calin M, Maier SS et al (2015) Flexible cyclic siloxane core enhances the transfection efficiency of polyethylenimine-based non-viral gene vectors. J Mater Chem B 3(42):8250–8267

    Article  CAS  Google Scholar 

  • Wang Y, Zheng M, Meng F et al (2011) Branched polyethylenimine derivatives with reductively cleavable periphery for safe and efficient in vitro gene transfer. Biomacromol 12(4):1032–1040

    Article  CAS  Google Scholar 

  • Wu P, Chen H, Jin R et al (2018) Non-viral gene delivery systems for tissue repair and regeneration. J Transl Med 16(1):29

    Article  CAS  Google Scholar 

  • Yang J, Liu H, Zhang X (2014) Design, preparation and application of nucleic acid delivery carriers. Biotechnol Adv 32(4):804–817

    Article  CAS  Google Scholar 

  • Yao WJ, Cheng X, Fu SX et al (2018) Low molecular weight polyethylenimine-grafted soybean protein gene carriers with low cytotoxicity and greatly improved transfection invitro. J Biomater Appl 32(7):957–966

    Article  CAS  Google Scholar 

  • Yin H, Kanasty RL, Eltoukhy AA et al (2014) Non-viral vectors for gene-based therapy. Nat Rev. Genet 15(8):541–555

    Article  CAS  Google Scholar 

  • Zakeri A, Kouhbanani MAJ, Beheshtkhoo N et al (2018) Polyethylenimine-based nanocarriers in co-delivery of drug and gene: a developing horizon. Nano Rev Exp 9(1):1488497

    Google Scholar 

  • Zhang Y, Barboiu M (2016) Constitutional dynamic materials-toward natural selection of function. Chem Rev 116(3):809–834

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This publication is part of a project that has received funding from the H2020 ERA Chairs Project no 667387: SupraChem Lab Laboratory of Supramolecular Chemistry for Adaptive Delivery Systems ERA Chair initiative.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lilia Clima .

Editor information

Editors and Affiliations

Ethics declarations

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Clima, L., Dascalu, A.I., Craciun, B.F., Pinteala, M. (2021). Polymeric Carriers for Transporting Nucleic Acids—Contributions to the Field. In: J.M. Abadie, M., Pinteala, M., Rotaru, A. (eds) New Trends in Macromolecular and Supramolecular Chemistry for Biological Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-57456-7_7

Download citation

Publish with us

Policies and ethics