Skip to main content
Log in

Phosphorylation sensitizes microtubule-associated protein τ to Al3+-induced aggregation

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

In Alzheimer’s disease the microtubule-associated protein τ becomes hyperphosphorylated and aggregates into paired helical filaments (PHFs). Although the biochemical basis of the aggregation of τ into PHFs is not very clear, Al3+ has been suggested to play some role. Previous studies have shown that Al3+ alters the phosphorylation state and causes aggregation of τ in experimental animals and cultured neurons. In this study Al3+ inhibited phosphorylation of τ by neuronal cdc2-like kinase and dephosphorylation of phosphorylated τ by phosphatase 2B. These inhibitions are very likely due to Al3+-induced aggregations of various proteins present in phosphorylation/dephosphorylation assay mixtures since Al3+ caused aggregations of all proteins examined. Furthermore, compared to other proteins, τ displayed only an average sensitivity towards Al3+-induced aggregation. However upon phosphorylation, τ’s sensitivity towards Al3+ increased 3.5 fold. In the presence of the metal chelator EDTA, Al3+-induced aggregates of τ became soluble, whereas Al3+-induced phosphorylated τ aggregates were insoluble in the buffer containing EDTA and remained insensitive to proteolysis. Our data suggest that phosphorylation sensitizes τ to Al3+ and phosphorylated τ transforms irreversibly into a phosphatase and protease resistant aggregate in presence of this metal ion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AD:

Alzheimer disease

A kinase:

cAMP-dependent protein kinase

NCLK:

neuronal cdc2-like kinase

PAGE:

poly-acrylamide gel electrophoresis

PHF:

paired helical filaments

PNPP:

p-nitophenyl phosphate

PP2B:

phosphoprotein phosphatase 2B

SDS:

sodium dodecyl sulfate

References

  1. Goedert, M. 1993. Tau protein and the neurofibrillary pathology of Alzheimer’s disease, Trends Neurosci 16: 460–465.

    Article  CAS  PubMed  Google Scholar 

  2. Wang, J.-Z., Gong, C.-X., Zaidi, T., Grundke-Iqbal, I., and Iqbal, K. 1995. Dephosphorylation of Alzheimer paired helical filaments by protein phosphatase-2A and -2B, J. Biol. Chem. 270: 4854–4860.

    Article  CAS  PubMed  Google Scholar 

  3. Alonso, A. D. C., Zaidi, T., Grundke-Iqbal, I., and Iqbal, K. 1994. Role of abnormally phosphorylated tau in the breakdown of microtubules in Alzheimer disease, Proc. Natl. Acad. Sci. USA 91: 5562–5566.

    Article  CAS  PubMed  Google Scholar 

  4. Morishima-Kawashima, M., Hasegawa, M., Takio, K. Suzuki, M., Yoshida, H., Titani, K. and Ihara, Y. 1995. Proline-directed and non-proline-directed phosphorylation of PHF-tau, J. Biol. Chem. 270: 823–829.

    Article  CAS  PubMed  Google Scholar 

  5. Matsuo, E. S., Shin, R.-W., Billingsley, M. L., deVoode, A. V., O’Connor, M., Trojanowski, J. Q. and Lee, V. M.-Y 1994. Biopsy-derived adult human brain tau is phosphorylated at many of the same sites as Alzheimer’s disease paired helical filament tau, Neuron. 13: 989–1002.

    Article  CAS  PubMed  Google Scholar 

  6. Watanabe, A., Hasegawa, M., Suzuki, M., Takio, K., Morishimakawashima, M., Titani, K., Arai, T., Kosik, K. S., and Ihara, K., Y. 1993. In vivo phosphorylation sites in fetal and adult rat tau, J. Biol. Chem. 268: 25712–25717.

    CAS  PubMed  Google Scholar 

  7. Goedert, M., Jakes, R., Spillantini, M. G., Hasgawa, M., Smith, M. J. and Crowther, R. A. 1996. Assembly of microtubule-associated protein tau into Alzheimer-like filaments induced by sulfated glycosamineglycans, Nature 383: 550–553.

    Article  CAS  PubMed  Google Scholar 

  8. Martyn, C. N., Osmond, C., Edwardson, J. A., Baker, D. J. P., Harris, E. C. and Lacey, R. F. 1989. Geographical relationship between Alzheimer’s disease and aluminum in drinking water, Lancet 1: 59–62.

    CAS  PubMed  Google Scholar 

  9. Neri, L. C. and Hewitt D. 1991. Aluminum, Alzheimer’s disease and drinking water, Lancet 338: 390.

    Article  CAS  PubMed  Google Scholar 

  10. Pearl, D. P. and Brady, A. R. 1980. Alzheimer’s disease: X-ray spectrometric evidence of aluminum accumulation in neurofibrillary tangle-bearing neurons, Science 208: 279–299.

    Article  Google Scholar 

  11. Good, P. F., Perl, D. P., Bierra, L. M. and Schmeidler, J. 1992. Selective accumulation of aluminum and iron in the neurofibrillary tangles of Alzheimer’s disease: a laser microprobe (LAMMA) study, Ann. Neurol. 31: 286–292.

    Article  CAS  PubMed  Google Scholar 

  12. Masters, C. L., Multhaup, G., Simms, G., Pottgiesser, J., Martins, R. N. and Beyreuther, K. 1985. Neuronal origin of a cerebral amyloid: neurofibrillary tangles of Alzheimer’s disease contain the same protein as the amyloid of plaque core and blood vessels, EMBO J. 4: 2757–2763.

    CAS  PubMed  Google Scholar 

  13. Crapper-McLachlan, D. R., Dalton, A. J., Kruck, T. P., Bell, M. Y., Smith, W. L., Kalow, W. and Andrew, D. F. 1991. Intramuscular desferrioxamine in patients with Alzheimer’s disease, Lancet 337: 1304–1308.

    Article  CAS  PubMed  Google Scholar 

  14. Landsberg, J. P., McDonald, B. and Watt, F. 1992. Absence of aluminium in neuritic plaque cores in Alzheimer’s disease, Nature 360: 65–68.

    Article  CAS  PubMed  Google Scholar 

  15. Chafi, A. H., Hauw, J.-J., Rancurel, G., Berry, J.-P. and Galle, C. 1991. Absence of aluminum in Alzheimer’s disease brain tissue: electron microprobe and ion microprobe studies, Neurosci. Lett. 173: 61–64.

    Article  Google Scholar 

  16. Guy, S. P., Jones, D., Mann, D. M. and Itzhaki, R. F. (1991). Human neuroblastoma cells treated with aluminum express an epitope associated with Alzheimer’s disease neurofibrillary tangles, Neurosci Lett. 121: 166–168.

    Article  CAS  PubMed  Google Scholar 

  17. Johnson, G. V., Cogdill, K. W. and Jope, R. S. 1990. Oral aluminum alters in vitro protein phosphorylation and kinase activities in rat brain, Neurobiol. Aging 11: 209–216.

    Article  CAS  PubMed  Google Scholar 

  18. Correas, I., Diaz-Nido, J. and Avila, J. 1992. Microtubule-associated protein tau is phosphorylated by protein kinase C on its tubulin binding domain, J. Biol. Chem. 262: 15721–15728.

    Google Scholar 

  19. Abdel-Ghany, M., El-Sebae, A. K., and Shalloway, D. 1993. Aluminum-induced nonenzymatic phospho-incorporation into human tau and other proteins, J. Biol. Chem. 268: 11976–11981.

    CAS  PubMed  Google Scholar 

  20. Yamamoto, H., Saitoh, Y., Yasugawa, S. and Miyamoto, E. 1990. Dephosphorylation of tau factor by protein phosphatase 2A in synaptosomal cytosol fractions, and inhibition by aluminum, J. Neurochem. 55: 683–690.

    Article  CAS  PubMed  Google Scholar 

  21. Savory, J., Huang, Y., Herman, M. M., Reyes, M. R. and Willis, M. R. 1995. Tau immunoreactivity associated with aluminum maltolate-induced neurofibrillary degeneration in rabbits, Brain Res. 669: 325–329.

    Article  CAS  PubMed  Google Scholar 

  22. Terry, R. D. and Pena, C. 1965. Experimental production of neurofibrillar degeneration 2. Electron microscopy, phosphate biochemistry and electron probe analysis, J. Neuropathol. Exp. Neurol. 24: 200–210.

    Article  CAS  PubMed  Google Scholar 

  23. Singer, S. M., Chambers, C. B., Newfry, G. A., Norlund, M. A. and Muma, N. A. 1997. Tau in aluminum-induced neurofibrillary tangles, Neurotoxicology 18: 63–76.

    CAS  PubMed  Google Scholar 

  24. Shin, R.-W., Lee, V. M.-Y. and Trojanowski, J. Q. 1994. Aluminum modifies the properties of Alzheimer’s disease PHFtau proteinsin vivo andin vitro. J. Neurosci. 14: 7221–7223.

    CAS  PubMed  Google Scholar 

  25. Shin, R.-W., Lee, V. M.-Y., and Trojanowski, J. Q. 1995. Neurofibrillary pathology and aluminum in Alzheimer’s disease, Hitol. Histopathol. 10: 969–978.

    CAS  Google Scholar 

  26. Paudel, H. K. 1997. The regulatory S262 of microtubule-associated protein tau is phosphorylated by phosphorylase kinase, J. Biol. Chem. 272: 1777–1785.

    Article  CAS  PubMed  Google Scholar 

  27. Lew, J., Beaudette, K., Litwin, C. M. E. and Wang, J. H. 1992. Purification and characterization of a novel proline-directed protein kinase from bovine brain, J. Biol. Chem. 267: 13383–13390.

    CAS  PubMed  Google Scholar 

  28. Cohen, P. 1973. The subunit structure of rabbit-skeletal-muscle phosphorylase kinase, and the molecular basis of its activation, Eur. J. Biochem. 34: 1–14.

    Article  CAS  PubMed  Google Scholar 

  29. Kastenschmidt, L. L., Kastenschmidt, J. and Helmreich, E. 1968. The effect of temperature on the allosteric transitions of rabbit skeletal muscle phosphorylase b, Biochemistry 7: 3590–3608.

    Article  CAS  PubMed  Google Scholar 

  30. Paudel, H. K., Lew, J., Ali, Z., and Wang, J. H. 1993. Brain proline-directed protein kinase phosphorylates tau on sites that are abnormally phosphorylated in tau associated with Alzheimer’s paired helical filaments, J. Biol. Chem. 268: 23512–23518.

    CAS  PubMed  Google Scholar 

  31. Roskoski, R. Jr. 1983. Assays for protein kinase, Method Emzymol. 99: 3–6.

    Article  CAS  Google Scholar 

  32. Paudel, H. K. 1997. Phosphorylation by neuronal cdc2-like protein kinase promotes dimerization of tau protein in vitro, J. Biol. Chem. 272: 28328–28334.

    Article  CAS  PubMed  Google Scholar 

  33. Paudel, H. K. and Carlson, G. M. 1991. The ATPase activity of phoshorylase kinase is regulated in parallel with its protein kinase activity, J. Biol. Chem. 266: 16524–16529.

    CAS  PubMed  Google Scholar 

  34. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature 227: 680–685.

    Article  CAS  PubMed  Google Scholar 

  35. Cleveland, D. W., Hwo, S.-Y., and Kirschner, M. W. 1977. Physical and chemical properties of purified tau factor and the role of tau in microtubule assembly, J. Mol. Biol. 116: 227–247.

    Article  CAS  PubMed  Google Scholar 

  36. Maulet, Y., and Cox, J. A. 1983. Structural changes in melittin and calmodulin upon complex formation and their modulation by calcium, Biochemistry 22: 5680–5686.

    Article  CAS  PubMed  Google Scholar 

  37. Lew, J., Qi, Z., Huang, Q.-Q., Paudel, H., Matsuura, I., Matsushita, M., Zhu, X., and Wang, J. H. 1995. Structure, function, and regulation of neuronal cdc2-like protein kinase, Neurobiol. Aging 16: 263–270.

    Article  CAS  PubMed  Google Scholar 

  38. Mawal-Dewan, M., Henley, J., De Voorde, A. V., Trojanoswski, J. Q. and Lee, V. M.-Y. 1994. The phosphorylation state of tau in developing rat brain is regulated by phosphoprotein phosphatases, J. Biol. Chem. 269: 30981–30987.

    CAS  PubMed  Google Scholar 

  39. Merrick, S. E., Demoise, D. C. and Lee, V. M.-Y. 1996. Site-specific dephosphorylation of tau protein at Ser202/Thr205 in response to microtubule depolymerization in cultured human neurons involves protein phosphatase 2A, J. Biol. Chem. 271: 5589–5594.

    Article  CAS  PubMed  Google Scholar 

  40. Scott, C. W., Spreen, R. C., Herman, J. L., Chow, F. P., Davison, M. D., Young, J. and Caputo, C. B. 1993. Phosphorylation of recombinant tau by cAMP-dependent protein kinase. Identification of phosphorylation sites and effect on microtubule assembly, J. Biol. Chem. 268: 1166–1173.

    CAS  PubMed  Google Scholar 

  41. Crapper-McLachlan, D. R. 1986. Aluminum and Alzheimer’s disease, Neurobiol. Aging 7: 525–532.

    Article  Google Scholar 

  42. Birchall, J. D. and Chappell, J. S. 1988. Aluminum, chemical physiology, and Alzheimer’s disease, Lancet 2: 1008–1010.

    Article  CAS  PubMed  Google Scholar 

  43. Shea, T. B., Beermann, M. L., and Nixon, R. A. 1992. Aluminum alters the electrophoretic properties of neurofilament proteins: role of phosphorylation state, J. Neurochem. 58: 542–547.

    Article  CAS  PubMed  Google Scholar 

  44. Shen, Z. M., Perczel, A., Hollosi, M., Nagypal, I. and Fasman, G. D. 1994. Study of Al3+ binding and conformational properties of alanine-substituted C-terminal domain of the NF-M protein and its relevance to Alzheimer’s disease, Biochemistry 33: 9627–9636.

    Article  CAS  PubMed  Google Scholar 

  45. Suhayda, C. G. and Haug, A. 1984. Organic acids prevent aluminum-induced conformational changes in calmodulin, Biochem. Biophys. Res. Commun. 119: 376–381.

    Article  CAS  PubMed  Google Scholar 

  46. Steiner, B., Mandelkow, E.-M., Biernat, J., Gustke, N., Meyer, H. E., Schmidt, B., Mieskes, G., Soling, H. D., Drechsel, D., Mirschner, M. W., Goedert, M., and Mandelkow, E. 1990. Phosphorylation of microtubule-associated protein tau: identification of the site for Ca2+-calmodulin dependent kinase and relationship with tau phosphorylation in Alzheimer tangles, EMBO J. 9: 3539–3544.

    CAS  PubMed  Google Scholar 

  47. Crapper-McLachlan, D. R., Kruck, T. P., Lukiw, W. J. and Krishnan, S. V. 1991. Would decreased aluminum ingestion reduce the incidence of Alzheimer’s disease? Can Med Assoc. J. 145: 793–804.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hemant K. Paudel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, W., Ma, K.K.Y., Sun, W. et al. Phosphorylation sensitizes microtubule-associated protein τ to Al3+-induced aggregation. Neurochem Res 23, 1467–1476 (1998). https://doi.org/10.1007/BF03181171

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03181171

Key Words

Navigation