Skip to main content
Log in

The antimicrobial properties of copper surfaces against a range of important nosocomial pathogens

  • Applied Microbiology
  • Original Articles
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

Hospital acquired infections (HAI) are a major problem worldwide and controlling the spread of these infections within a hospital is a constant challenge. Recent studies have highlighted the antimicrobial properties of copper and its alloys against a range of different bacteria. The objective of this study was to evaluate the antimicrobial properties of copper compared to stainless steel against a range of clinically important pathogens. These pathogens consisted of five isolates of each of the following organisms; meticillin resistantStaphylococcus aureus (MRSA),Pseudomonas aeruginosa, Escherichia coli, vancomycin-resistant Enterococci (VRE) and Panton-Valentine Leukocidin positive community acquired-MSSA (PVL positive CA-MSSA). MRSA,P. aeruginosa, E. coli, and CA-MSSA isolates were not detectable after a median time of 60 minutes. No detectable levels for all VRE isolates were determined after a median time of 40 minutes. However, for all isolates tested the stainless steel had no effect on the survival of the bacteria and levels remained similar to the time zero count. The results of this study demonstrate that copper has a strong antimicrobial effect against a range of clinically important pathogens compared to stainless steel and potentially could be employed to aid the control HAI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abou Neel E.A., Ahmed I., Pratten J., Pratten J., Nazhat S.N., Knowles J.C. (2005). Characterisation of antibacterial copper releasing degradable phosphate glass fibres. Biomaterials, 26: 2247–2254.

    Article  CAS  Google Scholar 

  • Airey P., Verran J. (2007). Potential use of copper as a hygienic surface; problems associated with cumulative soiling and cleaning. J. Hosp. Infect., 67: 271–277.

    Article  CAS  PubMed  Google Scholar 

  • Andrews J.M. for the BSAC Working Party on Susceptibility Testing (2007). BSAC standardized disc susceptibility testing method (version 6). J. Antimicrob. Chemother., 60: 20–41.

    Article  CAS  PubMed  Google Scholar 

  • Baena M.I., Marquez M.C., Matres V., Botella J., Ventosa A. (2006). Bactericidal activity of copper and niobium-alloyed austenitic stainless steel. Curr. Microbiol., 53: 491–495.

    Article  CAS  PubMed  Google Scholar 

  • Cooney T.E. (1995). Bactericidal, activity of copper and noncopper paints. Infect. Control. Hosp. Epidemiol., 16: 444–450.

    Article  CAS  PubMed  Google Scholar 

  • Dollwet H.H.A., Sorenson J.R.J. (2001). Historic uses of copper compounds in medicine. J. Trace. Elem. Med. Biol., 2: 80–87.

    Google Scholar 

  • Faúndez G., Troncoso M., Navarrete P., Figueroa G. (2004). Antimicrobial activity of copper surfaces against suspensions ofSalmonella enterica andCampylobacter jejuni. BMC Microbiol., 4: 19.

    Article  PubMed  Google Scholar 

  • Halwani M., Solaymani-Dodaran M., Grundmann H., Coupland C., Slack R.J. (2006). Cross-transmission of nosocomial pathogens in an adult intensive care unit: incidence and risk factors. J. Hosp. Infect., 63: 39–46.

    Article  CAS  PubMed  Google Scholar 

  • Kramer A., Schwebke I., Kampf G. (2006). How long do nosocomial pathogens persist on inanimate surfaces? A systematic review. BMC Infect. Dis., 16: 130.

    Article  Google Scholar 

  • Lautenbach E., Polk R.E. (2007). Resistant Gram-negative bacilli: A neglected healthcare crisis? Am. J. Health-Syst. Ph., 64: S3–21.

    Article  CAS  Google Scholar 

  • Mclean R.J.C., Hussain A.A., Sayer M., Vincent P.J., Hughes D.J., Smith T.J.N. (1993). Antibacterial activity of multilayer silver copper surface-films on catheter material. Can. J. Microbiol., 39: 895–899.

    Article  CAS  PubMed  Google Scholar 

  • Mehtar S., Wiid I., Todorov S.D. (2008). The antimicrobial activity of copper and copper alloys against nosocomial pathogens andMycobacterium tuberculosis isolates from healthcare facilities in the Western Cape: an in-vitro study. J. Hosp. Infect., 68: 45–51.

    Article  CAS  PubMed  Google Scholar 

  • Noyce J.O., Michels H., Keevil C.W. (2006a). Use of copper cast alloys to controlEscherichia coli O157 cross-contamination during food processing. Appl. Environ. Microbiol., 72: 4239–4244.

    Article  CAS  PubMed  Google Scholar 

  • Noyce J.O., Michels H., Keevil C.W. (2006b). Potential use of copper surfaces to reduce survival of epidemic meticillin-resistantStaphylococcus aureus in the healthcare environment. J. Hosp. Infect., 63: 289–297.

    Article  CAS  PubMed  Google Scholar 

  • Oie S., Hosokawa I., Kamiya A. (2002). Contamination of room door handles by methicillin-sensitive/ methicillin-resistantStaphylococcus aureus. J. Hosp. Infect., 51: 140–143.

    Article  CAS  PubMed  Google Scholar 

  • Qin Y.M., Zhu C.J., Chen J., Liang D., Wo G.F. (2007). Absorption and release of zinc and copper ions by chitosan fibers. J. Appl. Polym. Sci., 105: 527–532.

    Article  CAS  Google Scholar 

  • Ruparelia J.P., Chatteriee A.K., Duttagupta S.P., Mukherji S. (2008). Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater., 4: 707–716.

    Article  CAS  PubMed  Google Scholar 

  • Song J.S., Lee S., Cha G.C., Jung S.H., Choi S.Y., Kim K.H., Mun M.S. (2005). Surface modification of silicone rubber by ion beam assisted deposition (IBAD) for improved biocompatibility. J. Appl. Polym. Sci., 96: 1095–1101.

    Article  CAS  Google Scholar 

  • Thneibat A., Fontana M., Cochran M.A., Gonzalez-Cabezas C., Moore B.K., Matis B.A., Lund M.R. (2008). Anticariogenic and antibacterial properties of a copper varnish using anin vitro microbial caries model. Oper. Dent., 33: 142–148.

    Article  PubMed  Google Scholar 

  • Vonberg R.P., Wolter A., Chaberny I.F., Kola A., Ziesing S., Suerbaum S., Gastmeier P. (2007). Epidemiology of multidrug-resistant Gram-negative bacteria: Data from an university hospital over a 36-month period. Int. J. Hyg. Environ. Health., 211: 251–257.

    Article  PubMed  Google Scholar 

  • Weaver L., Michels H.T., Keevil C.W. (2008). Survival ofClostridium difficile on copper and steel: futuristic options for hospital hygiene. J. Hosp. Infect., 68: 145–151.

    Article  CAS  PubMed  Google Scholar 

  • Wheeldon L.J., Worthington T., Lambert P.A., Hilton A.C., Lowden C.J., Elliott T.S. (2008). Antimicrobial efficacy of copper surfaces against spores and vegetative cells ofClostridium difficile: the germination theory. J. Antimicrob. Chemother., 62: 522–525.

    Article  CAS  PubMed  Google Scholar 

  • Yates H.M., Brook L.A., Sheel D.W., Ditta I.B., Steele A., Foster H.A. (2008). The growth of copper oxides on glass by flame assisted chemical vapour deposition. Thin Solid Films, doi: 10.1016/j.tsf.2008.06.071

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon W. J. Gould.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gould, S.W.J., Fielder, M.D., Kelly, A.F. et al. The antimicrobial properties of copper surfaces against a range of important nosocomial pathogens. Ann. Microbiol. 59, 151–156 (2009). https://doi.org/10.1007/BF03175613

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03175613

Key words

Navigation