Skip to main content

An Overview of the Options for Antimicrobial Hard Surfaces in Hospitals

  • Chapter
  • First Online:
Use of Biocidal Surfaces for Reduction of Healthcare Acquired Infections

Abstract

Contaminated surfaces make an important contribution to the transmission of several important pathogens, including methicillin-resistant Staphylococcus aureus (MRSA), Clostridium difficile and a number of resistant Gram-negative rods, including Acinetobacter baumannii. Several different approaches are available for improving hospital hygiene, including improving the effectiveness of existing methods and a range of new approaches, including novel disinfectants. A complimentary approach is the introduction of antimicrobial surfaces (AMS), which exert a continuous reduction on the level of microbial contamination on hospitals surfaces. There are several approaches to making a hospital surface ‘antimicrobial’: permanently ‘manufacture in’ an agent with antimicrobial activity; periodically apply an agent with antimicrobial activity; or physically alter the properties of a surface to make it less able to support microbial contamination and/or easier to clean. Promising options for AMS in healthcare settings include metals (principally copper or silver), chemicals (organosilanes, quaternary ammonium compounds, light-activated antimicrobials, and polycationic polymers) and physical alteration of the surface to reduce microbial attachment or improve cleanability. Before widespread adoption of AMS, promising candidates require rigorous in vitro and in situ assessment, including an evaluation of their clinical impact and cost effectiveness. Copper alloy surfaces are the most closely evaluated option for AMS, and have demonstrated in vitro activity against a range of pathogens (although their sporicidal capacity remains equivocal), evidence of efficacy in in situ studies and their introduction has been associated with a reduction in healthcare-associated infections (HAI). However, their long-term durability, acceptability and cost-effectiveness have not been evaluated formally. Finding and evaluating the optimal AMS will require a multidisciplinary approach, involving industrial partners, materials scientists, healthcare scientists and epidemiologists to refine and test the available options.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AMS:

Antimicrobial surfaces

CFU:

Colony forming units

DLC:

Diamond-like carbon

EPA:

Environmental Protection Agency

HAI:

Healthcare-associated infections

HPV:

Hydrogen peroxide vapour

ICU:

Intensive care unit

MDRO:

Multidrug-resistant organisms (MDROs)

MRSA:

Methicillin-resistant Staphylococcus aureus

PEG:

Polyethylene glycol

PHMB:

Polyhexamethylene biguanide

QAC:

Quaternary ammonium compound

R-GNR:

Resistant Gram-negative rods (R-GNR)

TAC:

Total aerobic count

VRE:

Vancomycin-resistant enterococci

References

  1. Maki DG, Alvarado CJ, Hassemer CA, Zilz MA (1982) Relation of the inanimate hospital environment to endemic nosocomial infection. N Engl J Med 307:1562–1566

    CAS  PubMed  Google Scholar 

  2. Otter JA, Yezli S, French GL (2011) The role played by contaminated surfaces in the transmission of nosocomial pathogens. Infect Control Hosp Epidemiol 32:687–699

    PubMed  Google Scholar 

  3. Manian FA, Griesenauer S, Senkel D et al (2011) Isolation of Acinetobacter baumannii complex and methicillin-resistant Staphylococcus aureus from hospital rooms following terminal cleaning and disinfection: can we do better? Infect Control Hosp Epidemiol 32:667–672

    PubMed  Google Scholar 

  4. French GL, Otter JA, Shannon KP, Adams NM, Watling D, Parks MJ (2004) Tackling contamination of the hospital environment by methicillin-resistant Staphylococcus aureus (MRSA): a comparison between conventional terminal cleaning and hydrogen peroxide vapour decontamination. J Hosp Infect 57:31–37

    CAS  PubMed  Google Scholar 

  5. Boyce JM, Havill NL, Otter JA et al (2008) Impact of hydrogen peroxide vapor room decontamination on Clostridium difficile environmental contamination and transmission in a healthcare setting. Infect Control Hosp Epidemiol 29:723–729

    PubMed  Google Scholar 

  6. Boyce JM, Havill NL, Otter JA, Adams NM (2007) Widespread environmental contamination associated with patients with diarrhea and methicillin-resistant Staphylococcus aureus colonization of the gastrointestinal tract. Infect Control Hosp Epidemiol 28:1142–1147

    PubMed  Google Scholar 

  7. Lee BY, Wettstein ZS, McGlone SM et al (2010) Economic value of norovirus outbreak control measures in healthcare settings. Clin Microbiol Infect 17:640–646

    PubMed Central  PubMed  Google Scholar 

  8. Lawley TD, Clare S, Deakin LJ et al (2010) Use of purified Clostridium difficile spores to facilitate evaluation of health care disinfection regimens. Appl Environ Microbiol 76:6895–6900

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Oelberg DG, Joyner SE, Jiang X, Laborde D, Islam MP, Pickering LK (2000) Detection of pathogen transmission in neonatal nurseries using DNA markers as surrogate indicators. Pediatrics 105:311–315

    CAS  PubMed  Google Scholar 

  10. Boyce JM (1998) Are the epidemiology and microbiology of methicillin-resistant Staphylococcus aureus changing? JAMA 279:623–624

    CAS  PubMed  Google Scholar 

  11. Hayden MK, Blom DW, Lyle EA, Moore CG, Weinstein RA (2008) Risk of hand or glove contamination after contact with patients colonized with vancomycin-resistant enterococcus or the colonized patients’ environment. Infect Control Hosp Epidemiol 29:149–154

    PubMed  Google Scholar 

  12. Otter JA, French GL (2009) Survival of nosocomial bacteria and spores on surfaces and inactivation by hydrogen peroxide vapor. J Clin Microbiol 47:205–207

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Drees M, Snydman D, Schmid C et al (2008) Prior environmental contamination increases the risk of acquisition of vancomycin-resistant enterococci. Clin Infect Dis 46:678–685

    CAS  PubMed  Google Scholar 

  14. Shaughnessy MK, Micielli RL, DePestel DD et al (2011) Evaluation of hospital room assignment and acquisition of Clostridium difficile infection. Infect Control Hosp Epidemiol 32:201–206

    PubMed  Google Scholar 

  15. Huang SS, Datta R, Platt R (2006) Risk of acquiring antibiotic-resistant bacteria from prior room occupants. Arch Intern Med 166:1945–1951

    PubMed  Google Scholar 

  16. Nseir S, Blazejewski C, Lubret R, Wallet F, Courcol R, Durocher A (2011) Risk of acquiring multidrug-resistant Gram-negative bacilli from prior room occupants in the ICU. Clin Microbiol Infect 17:1201–1208

    CAS  PubMed  Google Scholar 

  17. Hardy KJ, Oppenheim BA, Gossain S, Gao F, Hawkey PM (2006) A study of the relationship between environmental contamination with methicillin-resistant Staphylococcus aureus (MRSA) and patients’ acquisition of MRSA. Infect Control Hosp Epidemiol 27:127–132

    PubMed  Google Scholar 

  18. Samore MH, Venkataraman L, DeGirolami PC, Arbeit RD, Karchmer AW (1996) Clinical and molecular epidemiology of sporadic and clustered cases of nosocomial Clostridium difficile diarrhea. Am J Med 100:32–40

    CAS  PubMed  Google Scholar 

  19. Passaretti CL, Otter JA, Reich NG et al (2013) An evaluation of environmental decontamination with hydrogen peroxide vapor for reducing the risk of patient acquisition of multidrug-resistant organisms. Clin Infect Dis 56:27–35

    CAS  PubMed  Google Scholar 

  20. Hayden MK, Bonten MJ, Blom DW, Lyle EA, van de Vijver DA, Weinstein RA (2006) Reduction in acquisition of vancomycin-resistant enterococcus after enforcement of routine environmental cleaning measures. Clin Infect Dis 42:1552–1560

    PubMed  Google Scholar 

  21. Datta R, Platt R, Yokoe DS, Huang SS (2011) Environmental cleaning intervention and risk of acquiring multidrug-resistant organisms from prior room occupants. Arch Intern Med 171:491–494

    PubMed  Google Scholar 

  22. Dancer SJ, White LF, Lamb J, Girvan EK, Robertson C (2009) Measuring the effect of enhanced cleaning in a UK hospital: a prospective cross-over study. BMC Med 7:28

    PubMed Central  PubMed  Google Scholar 

  23. Mayfield JL, Leet T, Miller J, Mundy LM (2000) Environmental control to reduce transmission of Clostridium difficile. Clin Infect Dis 31:995–1000

    CAS  PubMed  Google Scholar 

  24. Donskey CJ (2013) Does improving surface cleaning and disinfection reduce health care-associated infections? Am J Infect Control 41:S12–S19

    PubMed  Google Scholar 

  25. Denton M, Wilcox MH, Parnell P et al (2004) Role of environmental cleaning in controlling an outbreak of Acinetobacter baumannii on a neurosurgical intensive care unit. J Hosp Infect 56:106–110

    CAS  PubMed  Google Scholar 

  26. Zanetti G, Blanc DS, Federli I et al (2007) Importation of Acinetobacter baumannii into a burn unit: a recurrent outbreak of infection associated with widespread environmental contamination. Infect Control Hosp Epidemiol 28:723–725

    PubMed  Google Scholar 

  27. Thornley CN, Emslie NA, Sprott TW, Greening GE, Rapana JP (2011) Recurring norovirus transmission on an airplane. Clin Infect Dis 53:515–520

    PubMed  Google Scholar 

  28. Martinez JA, Ruthazer R, Hansjosten K, Barefoot L, Snydman DR (2003) Role of environmental contamination as a risk factor for acquisition of vancomycin-resistant enterococci in patients treated in a medical intensive care unit. Arch Intern Med 163:1905–1912

    PubMed  Google Scholar 

  29. Stiefel U, Cadnum JL, Eckstein BC, Guerrero DM, Tima MA, Donskey CJ (2011) Contamination of hands with methicillin-resistant Staphylococcus aureus after contact with environmental surfaces and after contact with the skin of colonized patients. Infect Control Hosp Epidemiol 32:185–187

    PubMed  Google Scholar 

  30. Kramer A, Schwebke I, Kampf G (2006) How long do nosocomial pathogens persist on inanimate surfaces? A systematic review. BMC Infect Dis 6:130

    PubMed Central  PubMed  Google Scholar 

  31. Salgado CD, Sepkowitz KA, John JF et al (2013) Copper surfaces reduce the rate of healthcare-acquired infections in the intensive care unit. Infect Control Hosp Epidemiol 34:479–486

    PubMed  Google Scholar 

  32. White LF, Dancer SJ, Robertson C, McDonald J (2008) Are hygiene standards useful in assessing infection risk? Am J Infect Control 36:381–384

    PubMed  Google Scholar 

  33. Otter JA, Yezli S, Perl TM, Barbut F, French GL (2013) Is there a role for “no-touch” automated room disinfection systems in infection prevention and control? J Hosp Infect 83:1–13

    CAS  PubMed  Google Scholar 

  34. Larson HE, Borriello SP (1990) Quantitative study of antibiotic-induced susceptibility to Clostridium difficile enterocecitis in hamsters. Antimicrob Agents Chemother 34:1348–1353

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Yezli S, Otter JA (2011) Minimum infective dose of the major human respiratory and enteric viruses transmitted through food and the environment. Food Environ Microbiol 3:1–30

    Google Scholar 

  36. Morter S, Bennet G, Fish J et al (2011) Norovirus in the hospital setting: virus introduction and spread within the hospital environment. J Hosp Infect 77:106–112

    CAS  PubMed  Google Scholar 

  37. Dancer SJ (2004) How do we assess hospital cleaning? A proposal for microbiological standards for surface hygiene in hospitals. J Hosp Infect 56:10–15

    CAS  PubMed  Google Scholar 

  38. Walder M, Holmdahl T (2012) Reply to Roberts. Infect Control Hosp Epidemiol 33:312–313

    Google Scholar 

  39. Roberts CG (2012) Hydrogen peroxide vapor and aerosol room decontamination systems. Infect Control Hosp Epidemiol 33:312

    PubMed  Google Scholar 

  40. Mulvey D, Redding P, Robertson C et al (2011) Finding a benchmark for monitoring hospital cleanliness. J Hosp Infect 77:25–30

    CAS  PubMed  Google Scholar 

  41. Boyce JM, Havill NL, Dumigan DG, Golebiewski M, Balogun O, Rizvani R (2009) Monitoring the effectiveness of hospital cleaning practices by use of an adenosine triphosphate bioluminescence assay. Infect Control Hosp Epidemiol 30:678–684

    PubMed  Google Scholar 

  42. Lewis T, Griffith C, Gallo M, Weinbren M (2008) A modified ATP benchmark for evaluating the cleaning of some hospital environmental surfaces. J Hosp Infect 69:156–163

    CAS  PubMed  Google Scholar 

  43. Schmidt MG, Attaway HH, Sharpe PA et al (2012) Sustained reduction of microbial burden on common hospital surfaces through introduction of copper. J Clin Microbiol 50:2217–2223

    PubMed Central  PubMed  Google Scholar 

  44. Boyce JM, Havill NL, Havill HL, Mangione E, Dumigan DG, Moore BA (2011) Comparison of fluorescent marker systems with 2 quantitative methods of assessing terminal cleaning practices. Infect Control Hosp Epidemiol 32:1187–1193

    PubMed  Google Scholar 

  45. Wilson AP, Smyth D, Moore G et al (2011) The impact of enhanced cleaning within the intensive care unit on contamination of the near-patient environment with hospital pathogens: a randomized crossover study in critical care units in two hospitals. Crit Care Med 39:651–658

    PubMed  Google Scholar 

  46. Moore G, Griffith C (2006) A laboratory evaluation of the decontamination properties of microfibre cloths. J Hosp Infect 64:379–385

    CAS  PubMed  Google Scholar 

  47. McMullen KM, Zack J, Coopersmith CM, Kollef M, Dubberke E, Warren DK (2007) Use of hypochlorite solution to decrease rates of Clostridium difficile-associated diarrhea. Infect Control Hosp Epidemiol 28:205–207

    PubMed  Google Scholar 

  48. Orenstein R, Aronhalt KC, McManus JE Jr, Fedraw LA (2011) A targeted strategy to wipe out Clostridium difficile. Infect Control Hosp Epidemiol 32:1137–1139

    PubMed  Google Scholar 

  49. Hardy KJ, Gossain S, Henderson N et al (2007) Rapid recontamination with MRSA of the environment of an intensive care unit after decontamination with hydrogen peroxide vapour. J Hosp Infect 66:360–368

    CAS  PubMed  Google Scholar 

  50. Otter JA, Cummins M, Ahmad F, van Tonder C, Drabu YJ (2007) Assessing the biological efficacy and rate of recontamination following hydrogen peroxide vapour decontamination. J Hosp Infect 67:182–188

    CAS  PubMed  Google Scholar 

  51. Carling PC, Parry MM, Rupp ME, Po JL, Dick B, Von Beheren S (2008) Improving cleaning of the environment surrounding patients in 36 acute care hospitals. Infect Control Hosp Epidemiol 29:1035–1041

    PubMed  Google Scholar 

  52. Weber DJ, Rutala WA (2013) Self-disinfecting surfaces: review of current methodologies and future prospects. Am J Infect Control 41:S31–S35

    PubMed  Google Scholar 

  53. Weber DJ, Rutala WA (2012) Self-disinfecting surfaces. Infect Control Hosp Epidemiol 33:10–13

    PubMed  Google Scholar 

  54. Page K, Wilson M, Parkin IP (2009) Antimicrobial surfaces and their potential in reducing the role of the inanimate environment in the incidence of hospital-acquired infections. J Mater Chem 19:3819–3831

    CAS  Google Scholar 

  55. Humphreys H (2014) Self-disinfecting and microbiocide-impregnated surfaces and fabrics: what potential in interrupting the spread of healthcare-associated infection? Clin Infect Dis 58:848–853.

    Google Scholar 

  56. O’Gorman J, Humphreys H (2012) Application of copper to prevent and control infection. Where are we now? J Hosp Infect 81:217–223

    PubMed  Google Scholar 

  57. Grass G, Rensing C, Solioz M (2011) Metallic copper as an antimicrobial surface. Appl Environ Microbiol 77:1541–1547

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Mijnendonckx K, Leys N, Mahillon J, Silver S, Van Houdt R (2013) Antimicrobial silver: uses, toxicity and potential for resistance. Biometals 26:609–621

    CAS  PubMed  Google Scholar 

  59. Borkow G, Gabbay J (2008) Biocidal textiles can help fight nosocomial infections. Med Hypotheses 70:990–994

    CAS  PubMed  Google Scholar 

  60. Wheeldon LJ, Worthington T, Lambert PA, Hilton AC, Lowden CJ, Elliott TS (2008) Antimicrobial efficacy of copper surfaces against spores and vegetative cells of Clostridium difficile: the germination theory. J Antimicrob Chemother 62:522–525

    CAS  PubMed  Google Scholar 

  61. Tote K, Horemans T, Vanden Berghe D, Maes L, Cos P (2010) Inhibitory effect of biocides on the viable masses and matrices of Staphylococcus aureus and Pseudomonas aeruginosa biofilms. Appl Environ Microbiol 76:3135–3142

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Ojeil M, Jermann C, Holah J, Denyer SP, Maillard JY (2013) Evaluation of new in vitro efficacy test for antimicrobial surface activity reflecting UK hospital conditions. J Hosp Infect 85:274–281

    CAS  PubMed  Google Scholar 

  63. EPA, Protocol # 01-1A. Protocol for residual self-sanitizing activity of dried chemical residues on hard, non-porous surfaces. http://www.epa.gov/oppad001/cloroxpcol_final.pdf. Accessed 14 Mar 2014

  64. EPA, Test method for residual self-sanitizing activity of copper alloy surfaces. http://epa.gov/oppad001/pdf_files/test_meth_residual_surfaces.pdf. Accessed 14 Mar 2014

  65. Monk AB, Kanmukhla K, Trinder K, Borkow G (2014) Potent bactericidal efficacy of copper oxide 3 impregnated non-porous solid surfaces. BMC Microbiol 14:57

    PubMed Central  PubMed  Google Scholar 

  66. Worthington T, Karpanen T, Casey A, Lambert P, Elliott T (2012) Reply to Weber and Rutala. Infect Control Hosp Epidemiol 33:645–646

    PubMed  Google Scholar 

  67. Otter JA, Yezli S, Salkeld JA, French GL (2013) Evidence that contaminated surfaces contribute to the transmission of hospital pathogens and an overview of strategies to address contaminated surfaces in hospital settings. Am J Infect Control 41:S6–S11

    PubMed  Google Scholar 

  68. Hamilton D, Foster A, Ballantyne L et al (2010) Performance of ultramicrofibre cleaning technology with or without addition of a novel copper-based biocide. J Hosp Infect 74:62–71

    CAS  PubMed  Google Scholar 

  69. Hedin G, Rynback J, Lore B (2010) Reduction of bacterial surface contamination in the hospital environment by application of a new product with persistent effect. J Hosp Infect 75:112–115

    CAS  PubMed  Google Scholar 

  70. Schmidt MG, Attaway Iii HH, Fairey SE, Steed LL, Michels HT, Salgado CD (2013) Copper continuously limits the concentration of bacteria resident on bed rails within the intensive care unit. Infect Control Hosp Epidemiol 34:530–533

    PubMed  Google Scholar 

  71. Casey AL, Adams D, Karpanen TJ et al (2010) Role of copper in reducing hospital environment contamination. J Hosp Infect 74:72–77

    CAS  PubMed  Google Scholar 

  72. Boyce JM, Havill NL, Guercia KA, Schweon SJ, Moore BA (2014) Evaluation of two organosilane products for sustained antimicrobial activity on high-touch surfaces in patient rooms. Am J Infect Control 42:326–328

    CAS  PubMed  Google Scholar 

  73. Casey AL, Karpanen TJ, Adams D et al (2011) A comparative study to evaluate surface microbial contamination associated with copper-containing and stainless steel pens used by nurses in the critical care unit. Am J Infect Control 39:e52–e54

    CAS  PubMed  Google Scholar 

  74. Decraene V, Pratten J, Wilson M (2008) An assessment of the activity of a novel light-activated antimicrobial coating in a clinical environment. Infect Control Hosp Epidemiol 29:1181–1184

    PubMed  Google Scholar 

  75. Ismail S, Perni S, Pratten J, Parkin I, Wilson M (2011) Efficacy of a novel light-activated antimicrobial coating for disinfecting hospital surfaces. Infect Control Hosp Epidemiol 32:1130–1132

    PubMed  Google Scholar 

  76. Mikolay A, Huggett S, Tikana L, Grass G, Braun J, Nies DH (2010) Survival of bacteria on metallic copper surfaces in a hospital trial. Appl Microbiol Biotechnol 87:1875–1879

    CAS  PubMed  Google Scholar 

  77. Taylor L, Phillips P, Hastings R (2009) Reduction of bacterial contamination in a healthcare environment by silver antimicrobial technology. J Infect Prev 10:6–12

    Google Scholar 

  78. Salgado CD, Sepkowitz KA, John JF et al (2013) Reply to Harbarth et al. Infect Control Hosp Epidemiol 34:997–999

    PubMed  Google Scholar 

  79. Harbarth S, Maiwald M, Dancer SJ (2013) The environment and healthcare-acquired infections: why accurate reporting and evaluation of biological plausibility are important. Infect Control Hosp Epidemiol 34:996–997

    PubMed  Google Scholar 

  80. Kuhn P (1983) Doorknobs: a source of nosocomial infection? Diagn Med Nov/Dec:62–63

    Google Scholar 

  81. Silver S, le Phung T (2005) A bacterial view of the periodic table: genes and proteins for toxic inorganic ions. J Ind Microbiol Biotechnol 32:587–605

    CAS  PubMed  Google Scholar 

  82. Weaver L, Michels HT, Keevil CW (2008) Survival of Clostridium difficile on copper and steel: futuristic options for hospital hygiene. J Hosp Infect 68:145–151

    CAS  PubMed  Google Scholar 

  83. Warnes SL, Highmore CJ, Keevil CW (2012) Horizontal transfer of antibiotic resistance genes on abiotic touch surfaces: implications for public health. MBio 3:e00489

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Mkrtchyan HV, Russell CA, Wang N, Cutler RR (2013) Could public restrooms be an environment for bacterial resistomes? PLoS One 8:e54223

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Molin S, Tolker-Nielsen T (2003) Gene transfer occurs with enhanced efficiency in biofilms and induces enhanced stabilisation of the biofilm structure. Curr Opin Biotechnol 14:255–261

    CAS  PubMed  Google Scholar 

  86. Airey P, Verran J (2007) Potential use of copper as a hygienic surface; problems associated with cumulative soiling and cleaning. J Hosp Infect 67:271–277

    CAS  PubMed  Google Scholar 

  87. Santo CE, Morais PV, Grass G (2010) Isolation and characterization of bacteria resistant to metallic copper surfaces. Appl Environ Microbiol 76:1341–1348

    CAS  PubMed  Google Scholar 

  88. Espirito Santo C, Taudte N, Nies DH, Grass G (2008) Contribution of copper ion resistance to survival of Escherichia coli on metallic copper surfaces. Appl Environ Microbiol 74:977–986

    PubMed  Google Scholar 

  89. Hasman H, Aarestrup FM (2002) tcrB, a gene conferring transferable copper resistance in Enterococcus faecium: occurrence, transferability, and linkage to macrolide and glycopeptide resistance. Antimicrob Agents Chemother 46:1410–1416

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Touati A, Zenati K, Brasme L, Benallaoua S, de Champs C (2010) Extended-spectrum beta-lactamase characterisation and heavy metal resistance of Enterobacteriaceae strains isolated from hospital environmental surfaces. J Hosp Infect 75:78–79

    CAS  PubMed  Google Scholar 

  91. Gant VA, Wren MW, Rollins MS, Jeanes A, Hickok SS, Hall TJ (2007) Three novel highly charged copper-based biocides: safety and efficacy against healthcare-associated organisms. J Antimicrob Chemother 60:294–299

    CAS  PubMed  Google Scholar 

  92. Luna VA, Hall TJ, King DS, Cannons AC (2010) Susceptibility of 169 USA300 methicillin-resistant Staphylococcus aureus isolates to two copper-based biocides, CuAL42 and CuWB50. J Antimicrob Chemother 65:939–941

    CAS  PubMed  Google Scholar 

  93. EPA (2008) EPA registers copper-containing alloy products. http://www.epa.gov/pesticides/factsheets/copper-alloy-products.htm. Accessed 14 Mar 2014

  94. EU (2013) Existing active substances for which a decision of non-inclusion into Annex I or Ia of Directive 98/8/EC has been adopted. http://ec.europa.eu/environment/chemicals/biocides/active-substances/non_inclusion_en.htm. Accessed 14 Mar 2014

  95. Chaloupka K, Malam Y, Seifalian AM (2010) Nanosilver as a new generation of nanoproduct in biomedical applications. Trends Biotechnol 28:580–588

    CAS  PubMed  Google Scholar 

  96. Lorenzi SD, Romanini L, Finzi G, Salvatorelli G (2011) Biocide activity of microfiber mops with and without silver after contamination. Braz J Infect Dis 15:200–203

    PubMed  Google Scholar 

  97. Brady MJ, Lisay CM, Yurkovetskiy AV, Sawan SP (2003) Persistent silver disinfectant for the environmental control of pathogenic bacteria. Am J Infect Control 31:208–214

    PubMed  Google Scholar 

  98. Varghese S, Elfakhri S, Sheel DW, Sheel P, Bolton FJ, Foster HA (2013) Novel antibacterial silver-silica surface coatings prepared by chemical vapour deposition for infection control. J Appl Microbiol 115:1107–1116

    CAS  PubMed  Google Scholar 

  99. Bright KR, Gerba CP, Rusin PA (2002) Rapid reduction of Staphylococcus aureus populations on stainless steel surfaces by zeolite ceramic coatings containing silver and zinc ions. J Hosp Infect 52:307–309

    CAS  PubMed  Google Scholar 

  100. Cowan MM, Abshire KZ, Houk SL, Evans SM (2003) Antimicrobial efficacy of a silver-zeolite matrix coating on stainless steel. J Ind Microbiol Biotechnol 30:102–106

    CAS  PubMed  Google Scholar 

  101. Isquith AJ, Abbott EA, Walters PA (1972) Surface-bonded antimicrobial activity of an organosilicon quaternary ammonium chloride. Appl Microbiol 24:859–863

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Baxa D, Shetron-Rama L, Golembieski M et al (2011) In vitro evaluation of a novel process for reducing bacterial contamination of environmental surfaces. Am J Infect Control 39:483–487

    CAS  PubMed  Google Scholar 

  103. Thom KA, Standiford HC, Johnson JK, Hanna N, Furuno JP (2014) Effectiveness of an antimicrobial polymer to decrease contamination of environmental surfaces in the clinical setting. Infect Control Hosp Epidemiol 35:1060–1062

    PubMed  Google Scholar 

  104. Rutala WA, White MS, Gergen MF, Weber DJ (2006) Bacterial contamination of keyboards: efficacy and functional impact of disinfectants. Infect Control Hosp Epidemiol 27:372–377

    PubMed  Google Scholar 

  105. Keward J (2013) Disinfectants in health care: finding an alternative to chlorine dioxide. Br J Nurs 22:928–932

    Google Scholar 

  106. Perni S, Piccirillo C, Pratten J et al (2009) The antimicrobial properties of light-activated polymers containing methylene blue and gold nanoparticles. Biomaterials 30:89–93

    CAS  PubMed  Google Scholar 

  107. Decraene V, Pratten J, Wilson M (2008) Novel light-activated antimicrobial coatings are effective against surface-deposited Staphylococcus aureus. Curr Microbiol 57:269–273

    CAS  PubMed  Google Scholar 

  108. Foster HA, Ditta IB, Varghese S, Steele A (2011) Photocatalytic disinfection using titanium dioxide: spectrum and mechanism of antimicrobial activity. Appl Microbiol Biotechnol 90:1847–1868

    CAS  PubMed  Google Scholar 

  109. Leng CW, Soe TA, Wui LW et al (2013) Efficacy of titanium dioxide compounds in preventing environmental contamination by meticillin resistant Staphylococcus aureus (MRSA). Int J Infect Control 9:1–8

    Google Scholar 

  110. Wilson M (2003) Light-activated antimicrobial coating for the continuous disinfection of surfaces. Infect Control Hosp Epidemiol 24:782–784

    PubMed  Google Scholar 

  111. Smith K, Hunter IS (2008) Efficacy of common hospital biocides with biofilms of multi-drug resistant clinical isolates. J Med Microbiol 57:966–973

    CAS  PubMed  Google Scholar 

  112. Russell AD (2004) Whither triclosan? J Antimicrob Chemother 53:693–695

    CAS  PubMed  Google Scholar 

  113. Chung KK, Schumacher JF, Sampson EM, Burne RA, Antonelli PJ, Brennan AB (2007) Impact of engineered surface microtopography on biofilm formation of Staphylococcus aureus. Biointerphases 2:89–94

    CAS  PubMed  Google Scholar 

  114. Reddy ST, Chung KK, McDaniel CJ, Darouiche RO, Landman J, Brennan AB (2011) Micropatterned surfaces for reducing the risk of catheter-associated urinary tract infection: an in vitro study on the effect of sharklet micropatterned surfaces to inhibit bacterial colonization and migration of uropathogenic Escherichia coli. J Endourol 25:1547–1552

    PubMed Central  PubMed  Google Scholar 

  115. Park KD, Kim YS, Han DK et al (1998) Bacterial adhesion on PEG modified polyurethane surfaces. Biomaterials 19:851–859

    CAS  PubMed  Google Scholar 

  116. Hou S, Burton EA, Simon KA, Blodgett D, Luk YY, Ren D (2007) Inhibition of Escherichia coli biofilm formation by self-assembled monolayers of functional alkanethiols on gold. Appl Environ Microbiol 73:4300–4307

    CAS  PubMed Central  PubMed  Google Scholar 

  117. Hirota K, Murakami K, Nemoto K, Miyake Y (2005) Coating of a surface with 2-methacryloyloxyethyl phosphorylcholine (MPC) co-polymer significantly reduces retention of human pathogenic microorganisms. FEMS Microbiol Lett 248:37–45

    CAS  PubMed  Google Scholar 

  118. Cheng G, Zhang Z, Chen S, Bryers JD, Jiang S (2007) Inhibition of bacterial adhesion and biofilm formation on zwitterionic surfaces. Biomaterials 28:4192–4199

    CAS  PubMed  Google Scholar 

  119. Liu C, Zhao Q, Liu Y, Wang S, Abel EW (2008) Reduction of bacterial adhesion on modified DLC coatings. Colloids Surf B Biointerfaces 61:182–187

    CAS  PubMed  Google Scholar 

  120. Shepherd SJ, Beggs CB, Smith CF, Kerr KG, Noakes CJ, Sleigh PA (2010) Effect of negative air ions on the potential for bacterial contamination of plastic medical equipment. BMC Infect Dis 10:92

    PubMed Central  PubMed  Google Scholar 

  121. Pangule RC, Brooks SJ, Dinu CZ et al (2010) Antistaphylococcal nanocomposite films based on enzyme-nanotube conjugates. ACS Nano 4:3993–4000

    CAS  PubMed Central  PubMed  Google Scholar 

  122. Markoishvili K, Tsitlanadze G, Katsarava R, Morris JG Jr, Sulakvelidze A (2002) A novel sustained-release matrix based on biodegradable poly(ester amide)s and impregnated with bacteriophages and an antibiotic shows promise in management of infected venous stasis ulcers and other poorly healing wounds. Int J Dermatol 41:453–458

    CAS  PubMed  Google Scholar 

  123. Sileika TS, Barrett DG, Zhang R, Lau KHA, Messersmith PB (2013) Colorless multifunctional coatings inspired by polyphenols found in tea, chocolate, and wine. Angew Chem 52:10766–10770

    CAS  Google Scholar 

  124. Marais F, Mehtar S, Chalkley L (2010) Antimicrobial efficacy of copper touch surfaces in reducing environmental bioburden in a South African community healthcare facility. J Hosp Infect 74:80–82

    CAS  PubMed  Google Scholar 

  125. Noyce JO, Michels H, Keevil CW (2006) Potential use of copper surfaces to reduce survival of epidemic meticillin-resistant Staphylococcus aureus in the healthcare environment. J Hosp Infect 63:289–297

    CAS  PubMed  Google Scholar 

  126. NHS, Smart solution for HCAI evaluation report: nanopool surface coating. http://www.trustech.org.uk/wp-content/uploads/2013/03/Nanopool-final-summary-v.3-FINAL.pdf. Accessed 14 Mar 2014

  127. Karpanen TJ, Casey AL, Lambert PA et al (2012) The antimicrobial efficacy of copper alloy furnishing in the clinical environment: a crossover study. Infect Control Hosp Epidemiol 33:3–9

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan A. Otter Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Otter, J.A. (2014). An Overview of the Options for Antimicrobial Hard Surfaces in Hospitals. In: Borkow, G. (eds) Use of Biocidal Surfaces for Reduction of Healthcare Acquired Infections. Springer, Cham. https://doi.org/10.1007/978-3-319-08057-4_7

Download citation

Publish with us

Policies and ethics