Skip to main content
Log in

Molecular cloning of cDNAs for 14-3-3 and its protein interactions in a white-rot fungusPhanerochaete chrysosporium

  • Ecological and Environmental Microbiology
  • Original Articles
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

The 14-3-3 is a highly conserved, ubiquitous expressed protein in eukaryotes and very important in the regulation of such crucial cellular processes as metabolism, signal transduction, cell-cycle control, apoptosis, protein trafficking, transcription, stress responses, and malignant transformation. In this study, the full-length cDNA of 14-3-3 was cloned first time from a white-rot fungusPhanerochaete chrysosporium. Yeast two hybrid has been performed to fish out the proteins that can bind with 14-3-3 inP. chrysosporium. The results showed that 14-3-3 could form homodimers inP. chrysosporium. Two novel proteins containing predicted WD domain could interact with 14-3-3, too. In addition, the transcription of 14-3-3 gene under low-nitrogen medium was constitutional by RT-PCR analysis. These results indicate that 14-3-3 protein inP. chrysosporium may be involved in multiple cellular processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aitken A., Howell S., Jones D., Madrazo J., Patel Y. (1995). 14-3-3 alpha and delta are the phosphorylated forms of raf-activating 14-3-3 beta and zeta.In vivo stoichiometric phosphorylation in brain at a Ser-Pro-Glu-Lys MOTIF. J. Biol. Chem., 270: 5706–5709.

    Article  CAS  PubMed  Google Scholar 

  • Belinky P.A., Flikshtein N., Lechenko S., Gepstein S., Dosoretz C.G. (2003). Reactive oxygen species and induction of lignin peroxidase inPhanerochaete chrysosporium. Appl. Environ. Microbiol., 69 (11): 6500–6506.

    Article  CAS  PubMed  Google Scholar 

  • Daugherty C.J., Rooney M.F., Miller P.W., Ferl R.J. (1996). Molecular organization and tissue-specific expression of anArabidopsis 14-3-3 gene. Plant Cell, 8 (8):1239–1248.

    Article  CAS  PubMed  Google Scholar 

  • Gold M.H., Alic M. (1993). Molecular biology of the lignin-degrading basidiomycetePhanerochaete chrysosporium. Microbiol. Rev., 57: 605–622.

    CAS  PubMed  Google Scholar 

  • Horie M., Suzuki M., Takahashi E., Tanigami A. (1999). Cloning, expression, and chromosomal mapping of the human 14-3-3 gamma gene (YWHAG) to 7q11.23. Genomics, 60: 241–243.

    Article  CAS  PubMed  Google Scholar 

  • Jones D.H., Ley S., Aitken A. (1995). Isoforms of 14-3-3 protein can form homo- and hetero-dimersin vivo andin vitro: implications for function as adapter proteins. FEBS Lett., 368: 55–58.

    Article  CAS  PubMed  Google Scholar 

  • Kirk T.K., Farrell R.L. (1987). Enzymatic “combustion”: the microbial degradation of lignin. Annu Rev Microbiol., 41:465–505.

    Article  CAS  PubMed  Google Scholar 

  • Liljas A. (1991). Comparative biochemistry and biophysics of ribosomal proteins. Int. Rev. Cytol. 124: 103–136.

    Article  CAS  PubMed  Google Scholar 

  • Luk S.C., Ngai S.M., Tsui S.K., Chan K.K., Fung K.P., Lee C.Y., Waye M.M. (1998). Developmental regulation of 14-3-3 epsilon isoform in rat heart. J. Cell Biochem., 68: 195–199.

    Article  CAS  PubMed  Google Scholar 

  • Martin H., Martin V., Tamara K., Mika S., Sarigalkin F.W. (1999). Production of manganese peroxides and organic acids and mineralization of14C-labelled lignin (14C-DHP) during solid state fermentation of wheat straw with the white-rot fungusNematolama frowardii. Appl. Environ. Microbiol., 65: 1864–1870.

    Google Scholar 

  • Martinez D., Larrondo L.F., Putnam N., Gelpke M.D., Huang K., Chapman J., Helfenbein K.G., Ramaiya P., Detter J.C., Larimer F., Coutinho P.M., Henrissat B., Berka R., Cullen D., Rokhsar D. (2004). Genome sequence of the lignocellulose degrading fungusPhanerochaete chrysosporium strain RP78. Nat. Biotechnol., 22: 695–700.

    Article  CAS  PubMed  Google Scholar 

  • McConnell J.E., Armstrong J.F., Hodges P.E., Bard J.B. (1995). The mouse 14-3-3 epsilon isoform, a kinase regulator whose expression pattern is modulated in mesenchyme and neuronal differentiation. Dev. Biol., 169: 218–228.

    Article  CAS  PubMed  Google Scholar 

  • Möller W., Maassen J.A. (1986). On the structure, function, and dynamics of L7/L12 fromEscherichia coli ribosomes. In: Hardesty B., Kramer G., Eds, Structure, Function and Genetics of Ribosomes, Springer-Verlag, New York, pp. 309–325.

    Google Scholar 

  • Moore B.W., Perez V.J.(1967). Specific acidic proteins of the nervous system. In: Carlson F.D., Ed., Physiological and Biochemical Aspects of Nervous Integration, Englewood Ciffs, NJ: Prentice Hall, pp. 343–359.

    Google Scholar 

  • Neer E.J., Schmidt C.J., Nambudripad R., Smith T. F. (1994). The ancient regulatory-protein family of WD-repeat proteins. Nature, 371: 297–300.

    Article  CAS  PubMed  Google Scholar 

  • Roseboom P.H., Weller J.L., Babila T., Aitken A., Sellers L.A., Moiett J.R., Namboodiri M.A., Klein D.C. (1994). Cloning and characterization of the epsilon and zeta isoforms of the 14-3-3 proteins. DNA Cell Biol., 13: 629–640.

    Article  CAS  PubMed  Google Scholar 

  • Rosenquist M., Alsterfjord M., Larsson C., Sommarin M. (2001). Data mining theArabidopsis genome reveals fifteen 14-3-3 genes. Expression is demonstrated for two out of five novel genes. Plant Physiol., 127: 142–149.

    Article  CAS  PubMed  Google Scholar 

  • Smith T.F., Gaitatzesm C., Saxena K., Neer E.J. (1999). The WD repeat: a common architecture for diverse functions. Trends Biochem. Sci., 24: 181–185.

    Article  CAS  PubMed  Google Scholar 

  • Stewart P., Cullen D. (1999). Organization and differential regulation of a cluster of lignin peroxidase genes ofPhanerochaete chrysosporium. J. Bacteriol., 181 (11): 3427–3432.

    CAS  PubMed  Google Scholar 

  • ter Haar E., Harrison S.C., Kirchhausen T. (2000). Peptide-ingroove interactions link target proteins to the β-propeller of clathrin. Proc. Natl. Acad. Sci. U.S.A., 97: 1096–1100.

    Article  PubMed  Google Scholar 

  • Testerink C., van der Meulen R.M., Oppedijk B.J., de Boer A.H., Heimovaara-Dijkstra S., Kijne J.W., Wang M. (1999). Cell biology and signal transduction: differences in spatial expression between 14-3-3 isoforms in germinating barley embryos. Plant Physiol., 121: 81–88.

    Article  CAS  PubMed  Google Scholar 

  • Tien M., Kirk T.K. (1988). Lignin peroxidase ofPhanerochaete Chrysosporium. In: Wood W.A., Kellogg S.T., Eds, Method in Enzymology, Academic Press, San Diego, 161B: pp. 238–249.

    Google Scholar 

  • Vasara T., Keranen S., Penttila M., Saloheimo M. (2002). Characterization of two 14-3-3 genes fromTrichoderma reesei: interactions with yeast secretory pathway components. Biochim. Biophys. Acta, 1590: 27–40.

    Article  CAS  PubMed  Google Scholar 

  • Wang W., Shakes D.C. (1996). Molecular evolution of the 14-3-3 protein family. J. Mol. Evol., 43: 384–398.

    Article  CAS  PubMed  Google Scholar 

  • Watanabe M., Isobe T., Ichimura T., Kuwano R., Takahashi Y., Kondo H. (1993a). Molecular cloning of rat cDNAs for beta and gamma subtypes of 14-3-3 protein and developmental changes in expression of their mRNAs in the nervous system. Mol. Brain Res., 17: 135–146.

    Article  CAS  PubMed  Google Scholar 

  • Watanabe M., Isobe T., Ichimura T., Kuwano R., Takahashi Y., Kondo H. (1993b). Developmental regulation of neuronal expression for the eta subtype of the 14-3-3 protein, a putative regulatory protein for protein kinase C. Dev. Brain Res., 73: 225–235.

    Article  CAS  Google Scholar 

  • Watanabe M., Isobe T., Ichimura T., Kuwano R., Takahashi Y., Kondo H., Inoue Y. (1994). Molecular cloning of rat cDNAs for the zeta and theta subtypes of 14-3-3 protein and differential distributions of their mRNAs in the brain. Mol. Brain Res., 25: 113–121.

    Article  CAS  PubMed  Google Scholar 

  • Yaffe M.B., Rittinger K., Volinia S., Caron P.R., Aitken A., Leffers H., Gamblin S.J., Smerdon S.J., Cantley L.C. (1997). The structural basis for 14-3-3:phosphopeptide binding specificity. Cell 91, 961–971.

    Article  CAS  PubMed  Google Scholar 

  • Zhou G.L., Yamamoto T., Ozoe F., Yano D., Tanaka K., Matsuda H., Kawamukai M. (2000). Identification of a 14-3-3 protein from Lentinus edodes that interacts with cap (adenylyl cyclaseassociated protein), and conservation of this interaction in fission yeast. Biosci. Biotechnol. Biochem., 64: 149–159.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yizheng Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, G., Feng, H., Zhang, T. et al. Molecular cloning of cDNAs for 14-3-3 and its protein interactions in a white-rot fungusPhanerochaete chrysosporium . Ann. Microbiol. 56, 191–196 (2006). https://doi.org/10.1007/BF03175004

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03175004

Key words

Navigation