Skip to main content
Log in

Multifrequency EPR spectroscopy of Ho3+ ions in synthetic forsterite

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Electron paramagnetic resonance (EPR) of Ho3+ single ions and Ho3+−Mg2+-vacancy-Ho3+ associates in holmium-doped forsterite single crystals are studied at 9.4, 37.3 and 65–250 GHz. Crystals were grown from melt by the Czochralski technique in slightly oxidizing atmosphere. For both centers, directions of the principal magnetic axes and parameters of the effective spin Hamiltonians describing dependences of electron-nuclear levels on applied magnetic field are obtained. For Ho3+ substituting Mg2+ in the M2 site as the single ion and for Ho3+ ions in dimer centers, values of crystal field parameters related to a real crystal lattice structure are estimated in the framework of the exchange charge model. The calculated crystal field energies, values of theg-factors of the ground Ho3+ quasi-doublet and the directions of the corresponding magnetic moments agree satisfactorily with the data obtained from measurements of EPR and optical absorption and site-selective luminescence spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baryshevsky V.G., Korzhik M.V., Livshits M.G. in: OSA Proceedings on Advanced Solid-State Lasers (Dubé G., Chase L.L., eds.) vol. 10, p. 26. Washington, DC: Optical Society of America 1991.

    Google Scholar 

  2. Petricevic V., Seas A., Alfano R.R. in: OSA Proceedings on Advanced Solid-State Lasers (Dubé G., Chase L.L., eds.), vol. 10, p. 41. Washington, DC: Optical Society of America 1991.

    Google Scholar 

  3. Zhavoronkov N., Avtukh A., Mikhailov V.: Appl. Opt.36, 8601 (1997)

    Article  ADS  Google Scholar 

  4. Birle J.D., Gibbs G.V., Moore G.V., Smith J.V.: Am. Mineral.53, 807 (1968)

    Google Scholar 

  5. Chatelain A., Weeks R.A.: J. Chem. Phys.58, 3722 (1973)

    Article  ADS  Google Scholar 

  6. Gate J.M., Hafner S.S.: J. Chem. Phys.80, 2747 (1984)

    Article  ADS  Google Scholar 

  7. Gate J.-M., Rager H.: J. Phys. Condens. Matter9, 10033 (1997)

    Article  ADS  Google Scholar 

  8. Rager H.: Phys. Chem. Miner.1, 371 (1977)

    Article  ADS  Google Scholar 

  9. Budil D.E., Park D.G., Burlitch J.M., Geray R.F., Dieckmann R., Freed J.H.: J. Chem. Phys.101, 3538 (1994)

    Article  ADS  Google Scholar 

  10. Tarasov V.F., Shakurov G.S., Gavrilenko A.N.: Phys. Solid State37, 270 (1995)

    ADS  Google Scholar 

  11. Chatelain A., Weeks R.A.: J. Chem. Phys.52, 5682 (1970)

    Article  ADS  Google Scholar 

  12. Rager H., Hosoya S., Weiser G.: Phys. Chem. Miner.15, 383 (1988)

    Article  ADS  Google Scholar 

  13. Tarasov V.F., Shakurov G.S.: Optics Spectrosc.81, 880 (1996)

    ADS  Google Scholar 

  14. Hoffman K.R., Casas-Gonsales J., Jacobsen S.M., Yen W.M.: Phys. Rev. B44, 12589 (1991)

    Article  ADS  Google Scholar 

  15. Dudnikova V.B., Zharikov E.V., Urusov V.S.: Izv. Vissh. Uchebn. Zaved., Mater. Elektr. Tekh.,11 (2000) (in Russian)

  16. Shakurov G.S., Tarasov V.F.: Appl. Magn. Reson.21, 597 (2001)

    Article  Google Scholar 

  17. Bershov L.V., Gaite J.-M., Hafner S.S., Rager H.: Phys. Chem. Miner.9, 95 (1983)

    Article  ADS  Google Scholar 

  18. Ryabov I.D., Gaister A.V., Zharikov E.V.: Phys. Solid State45, 51 (2003)

    Article  ADS  Google Scholar 

  19. Gate J.M., Rager H.: Phys. Chem. Miner.30, 628 (2003)

    Article  ADS  Google Scholar 

  20. Kobayashi T., Takei H.: Earth Planet Sci. Lett.36, 231 (1977)

    Article  ADS  Google Scholar 

  21. Kim C.-H., Kwon I.-E., Park I.-E., Hwang I.-E., Bae I.-E., Yu B.-Y., Puyn C.-H., Hong G.-Y.: J. Alloys Compd.311, 33 (2000)

    Article  Google Scholar 

  22. Tarasov V.F., Shakurov G.S.: Appl. Magn. Reson.2, 571 (1991)

    Article  Google Scholar 

  23. Forrester P.A., Hempstead C.F.: Phys. Rev.126, 923 (1962)

    Article  ADS  Google Scholar 

  24. Griffith S.: Phys. Rev.132, 316 (1963)

    Article  MathSciNet  ADS  Google Scholar 

  25. Gaister A.V., Zharikov E.V., Konovalov A.A., Subbotin K.A., Tarasov V.F.: JETP Lett.77, 625 (2003)

    Article  ADS  Google Scholar 

  26. Baker J.M., Hutchison C.A. Jr., Martineau P.M.: Proc. R. Soc. Lond. A403, 221 (1986)

    Article  ADS  Google Scholar 

  27. McPherson G.L., Henling L.M.: Solid State Commun.19, 3 (1976)

    Article  Google Scholar 

  28. Henling L.M., McPherson G.L.: Phys. Rev. B16, 4756 (1977)

    Article  ADS  Google Scholar 

  29. McPherson G.L., Devaney K.O.: J. Phys. C.: Solid State Phys.13, 1735 (1980)

    Article  ADS  Google Scholar 

  30. Malkin B.Z. in: Spectroscopy of Solids Containing Rare-Earth Ions (Kaplyanskii A.A., Macfarlane R.M., eds.), chapt. 2, p. 13. Amsterdam: Elsevier 1987.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Konovalov, A.A., Lis, D.A., Malkin, B.Z. et al. Multifrequency EPR spectroscopy of Ho3+ ions in synthetic forsterite. Appl. Magn. Reson. 28, 267–280 (2005). https://doi.org/10.1007/BF03166761

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03166761

Keywords

Navigation