Skip to main content
Log in

Electron paramagnetic resonance and polarized optical absorption spectra of Ni2+ in synthetic forsterite

  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

The investigated Ni doped forsterite was grown with the floating zone technique. The EPR spectra were taken at room temperature using both 9.5 and 35 GHz. All specimens show EPR signals resulting from Mn2+ at M2 and Fe3+ at M1, M2, and Si positions. Ni2+ EPR signals are observed at 35 GHz but not at 9.5 GHz. The Ni2+ spectra are described by the spin Hamiltonian

$$H = \beta SgB + D\left( {S_{\text{z}}^{\text{2}} - \left( {S + 1} \right)S/3} \right) + E\left( {S_{\text{x}}^{\text{2}} - S_{\text{y}}^{\text{2}} } \right)$$

with S=1. The EPR parameters obtained are: D=−39.56 cm−1, E=−0.58 cm−1, g x=2.194, g y=2.160, g z=2.188. Polarized optical absorption spectra of Ni2+ were taken at room and liquid nitrogen temperature covering the range from 5500 to 42000 cm−1. The spectra are nearly independent of the polarization of light. Both EPR and optical spectra reveal that Ni2+ is ordered into M1. The local symmetry of the Ni(M1) complex is described by the point group D 2h with the main symmetry axis along a. Heating experiments in air up to 1000° C and three days indicated no change in the Ni ordering in this synthetic sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abragam A, Bleaney B (1970) Electron Paramagnetic Resonance of Transition Ions. Clarendon Press, Oxford

    Google Scholar 

  • Annersten H, Ericson T, Filippidis A (1982) Cation ordering in Ni-Fe olivines. Am Mineral 67:1212–1217

    Google Scholar 

  • Bershov LV, Gaite JM, Hafner SS, Rager H (1983) Electron paramagnetic resonance and ENDOR studies of Cr3+-Al3+ pairs in forsterite. Phys Chem Minerals 9:95–101

    Article  Google Scholar 

  • Bish DL (1981) Cation ordering in synthetic and natural Ni-Mg olivine. Am Mineral 66:770–776

    Google Scholar 

  • Burns RG (1970) Crystal field spectra and evidence of cation ordering in olivine minerals. Am Mineral 55:1608–1632

    Google Scholar 

  • Figgis BN (1966) Introduction to Ligand Fields. Interscience Publishers, New York

    Google Scholar 

  • Gaite JM (1973) Étude de proprietes locales dans les cristaux de basse symmetrie a l'aide de la resonance paramagnetique electronique d'ions a l'etat S. Dissertation Université d'Orleans, France

    Google Scholar 

  • Green GR, Walker G (1985) Luminescence Excitation Spectra of Mn2+ in Synthetic Forsterite. Phys Chem Minerals 12:271–278

    Article  Google Scholar 

  • Hafner S, Hosoya S, Rager H (1982) EPR study of Ni doped forsterites. Fortschr Mineral 60:89–90

    Google Scholar 

  • Hosoya S, Rager H, Weiser G (1982) Polarisierte Absorptionsspektren von Ni2+ in synthetischem Forsterit. Forschr Mineral 60:105

    Google Scholar 

  • McCormick TC, Smyth JR, Lofgren GE (1987) Site Occupancies of Minor Elements in Synthetic Olivines as Determined by Channeling-Enhanced X-ray Emission. Phys Chem Minerals 14:368–372

    Article  Google Scholar 

  • Newnham R, Santoro R, Fang J, Nomura S (1965) Antiferromagnetism in nickel orthosilicate. Acta Crystallogr 19:147–148

    Article  Google Scholar 

  • Niebuhr H (1975) Electron spin resonance of ferric iron in forsterite (Mg2SiO4). Acta Crystallogr A31, 274

    Google Scholar 

  • Nord AG, Annersten H, Filippidis A (1982) The cation distribution in synthetic Mg-Fe olivines. Am Mineral 67:1206–1211

    Google Scholar 

  • Rager H (1977) Electron spin resonance of trivalent chromium in forsterite, Mg2SiO4. Phys Chem Minerals 1:371–378

    Article  Google Scholar 

  • Rager H (1980a) Electric field gradients and asymmetry parameters of Fe3+, Mn2+, Cr3+ and Mg2+ in Mg2SiO4. J Mol Struct 58:215–220

    Article  Google Scholar 

  • Rager H (1980b) Electron-Nuclear Hyperfine Interactions of 53Cr3+ in Mg2SiO4 (Forsterite). Z Naturforsch 35a:1296–1303

    Google Scholar 

  • Rager H, Weiser G (1981) Polarized absorption spectra of trivalent chromium in forsterite, Mg2SiO4. Bull Mineral 104:603–609

    Google Scholar 

  • Rager H, Hosoya S (1984) Site Symmetries in Olivines Obtained from Structural and Spectroscopic Data. 13th International Congress of Crystallography, Collected Abstracts 21.1–4

  • Rajamani V, Brown GE, Prewitt CT (1975) Cation Ordering in Ni-Mg Olivine. Am Mineral 60:292–299

    Google Scholar 

  • Smyth JR, Taftø J (1982) Major and minor element site occupancies in heated natural forsterite. Geophys Res Lett 9:1113–1123

    Google Scholar 

  • Takei H, Hosoya S, Ozima M (1984) Synthesis of large single crystals of silicates and titanates. Materials Science of the Earth's Interior (Ed I Sunagawa), Terra Scientific Publishing Company, Tokyo, 1984, pp 107–130

    Google Scholar 

  • Tamada O, Fujino K, Sasaki S (1983) Structures and Electron Distribution of α-Co2SiO4 and α-Ni2SiO4 (Olivine Structure). Acta Crystallogr B39:692–697

    Google Scholar 

  • Tamada O (1984) Optical absorption spectra of (Ni,Mg)2SiO4 and (Co,Mg)2SiO4 synthetic olivines. J Mineral Soc Jpn 16:365–369 (in japanese)

    Google Scholar 

  • Wood BJ (1974) Crystal field spectrum of Ni2+ in olivine. Am Mineral 59:244–248

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rager, H., Hosoya, S. & Weiser, G. Electron paramagnetic resonance and polarized optical absorption spectra of Ni2+ in synthetic forsterite. Phys Chem Minerals 15, 383–389 (1988). https://doi.org/10.1007/BF00311043

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00311043

Keywords

Navigation