Skip to main content
Log in

Statistical analysis of DNA duplex structures in solution derived by high resolution NMR

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

An initial statistical analysis has been performed on the helical parameters for the solution structures of three DNA duplexes recently solved in this laboratory by proton NMR. Local conformations in these structures belong to the B family of forms; nevertheless they display a strong sequence-dependent heterogeneity akin to that found in single crystals and by theoretical calculations. However, average helical parameters as well as their variations are quite different for short DNA fragments in solution and in crystal. Average helical twist in three NMR-refined oligonucleotides is 34.6°, in remarkable agreement with independent solution-state data, while helical twist is 36° for DNA in crystals. Other characteristic features of solution DNA conformations are negative slide, systematically open minor groove (for almost all sequences), and decreased helical rise. The latter, rather unexpected finding, is correlated with a surprisingly strong non-flatness of Watson-Crick base pairs. Deviations of base pairs from planarity proved to be a significant source of conformational variability; of particular importance is base stagger, which is often missed in structural analysis of DNA. Several new structural parameters have been introduced for dinucleotide steps, characterizing non-planar geometries of constituent base pairs; these parameters show a significant degree of correlation with traditional step parameters (twist, tillt roll, shift, slide, rise). Many sequence-dependent features are observed in solution structures; variation of roll and slide parameters occurs according to “Calladine’s rules”, while variation of helical twist appears to oppose them. However, a larger set of solution structures is needed to complete the analysis of sequence dependence of DNA conformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wüthrich K.: NMR of Proteins and Nucleic Acids. New York: Wiley 1986.

    Google Scholar 

  2. Oppenheimer N.J., James T.L.: Methods in Enzymology, Nuclear Magnetic Resonance, Part A: Spectral Techniques and Dynamics, vol. 176. New York: Academic Press 1989.

    Google Scholar 

  3. Oppenheimer N.J., James T.L.: Methods in Enzymology, Nuclear Magnetic Resonance, Part B: Structure and Mechanism, vol. 177. New York: Academic Press 1989.

    Google Scholar 

  4. Wemmer D.E.: Biol. Magn. Reson.10, 195–264 (1992)

    Google Scholar 

  5. Haasnoot C.A.G., de Leeuw H.P.M., Altona C.: Tetrahedron36, 2783–2792 (1980)

    Article  Google Scholar 

  6. Keepers J.W., James T.L.: J. Magn. Reson.57, 404–426 (1984)

    Google Scholar 

  7. Borgias B.A., James T.L.: J. Magn. Reson.79, 493–512 (1988)

    Google Scholar 

  8. Lane A.N.: Biochim. Biophys. Acta1049, 189–204 (1990)

    Google Scholar 

  9. Rinkel I.J., Altona C.: J. Biomol. Struct. Dyn.4, 621–649 (1987)

    Google Scholar 

  10. Boelens R., Koning T.M.G., Kaptein R.: J. Mol. Struct.173, 299–311 (1988)

    Article  ADS  Google Scholar 

  11. Borgias B.A., James T.L.: J. Magn. Reson.87, 475–487 (1990)

    Google Scholar 

  12. Liu H., Thomas P.D., James T.L.: J. Magn. Reson.98, 163–175 (1992)

    Google Scholar 

  13. Liu H., Kumar A., Weisz K., Schmitz U., Bishop K.D., James T.L.: J. Magn. Reson.: J. Amer. Chem. Soc.115, 1590–1591 (1993)

    Article  Google Scholar 

  14. van Gunsteren W.F., Boelens D.G., Kaptein R., Zuiderweg E.R.P. in: Nucleic Acid Conformation and Dynamics, Report of NATO/CECAM Workshop (Olson W.K., ed.), pp. 79–82. Orsay: 1983.

  15. Nikonowicz E.P., Gorenstein D.G.: J. Amer. Chem. Soc.114, 7494–7503 (1992)

    Article  Google Scholar 

  16. Gochin M., James T.L.: Biochemistry29, 11172–11180 (1990)

    Article  Google Scholar 

  17. Kim S.-G., Reid B.R.: Biochemistry31, 12103–12116 (1992)

    Article  Google Scholar 

  18. Mauffret O., Hartmann B., Convert O., Lavery R., Fermandjian S.: J. Mol. Biol.227, 852–875 (1992)

    Article  Google Scholar 

  19. Ulyanov N.B., Schmitz U., James T.L.: J. Biomolec. NMR3, 547–568 (1993)

    Article  Google Scholar 

  20. Stolarski R., Egan W.M., James T.L. Biochemistry31, 7027–7042 (1992)

    Article  Google Scholar 

  21. Yang D., Gao Y.-G., Robinson H., van der Marel G.A., van Boom J.H., Wang A.H.-J., Rich A.: Biochemistry32, 8672–8681 (1993)

    Article  Google Scholar 

  22. Zhou N., Germann M.W., Sande J.H., Pattabiraman N., Vogel H.J.: Biochemistry32, 646–656 (1993)

    Article  Google Scholar 

  23. Blommers M.J.J., Walters J.A.L.I., Haasnoot C.A.G., Aelen J.M.A., van der Marel G.A., van Boom J.H., Hilbers C.W.: Biochemistry28, 7491–7498 (1989)

    Article  Google Scholar 

  24. Rosen M.A., Live D., Patel D.J.: Biochemistry31, 4004–4014 (1992)

    Article  Google Scholar 

  25. O’Handley S.F., Sanford D.G., Xu R., Lester C.C., Hingerty B.E., Broyde S., Krugh T.R.: Biochemistry32, 2481–2497 (1993)

    Article  Google Scholar 

  26. Chen S., Leupin W., Rance M., Chazin W.J.: Biochemistry31, 4406–4413 (1992)

    Article  Google Scholar 

  27. Robinson H., van der Marel G.A., van Boom J.H., Wang A.H.-J.: Biochemistry31, 10510–10517 (1992)

    Article  Google Scholar 

  28. Macaya R.F., Schultze P., Feigon J.: J. Am. Chem. Soc.114, 781–783 (1992)

    Article  Google Scholar 

  29. Radhakrishnan I., Patel D.J., Gao X.: Biochemistry31, 2514–2522 (1992)

    Article  Google Scholar 

  30. Smith F.W., Feigon J.: Biochemistry32, 8682–8692 (1993)

    Article  Google Scholar 

  31. Wang K.Y., McCurdy S., Shea R.G., Swaminathan S., Bolton P.H.: Biochemistry32, 1899–1904 (1993)

    Article  Google Scholar 

  32. Schmitz U., Pearlman D.A., James T.L.: J. Mol. Biol.221, 271–292 (1991)

    Article  Google Scholar 

  33. Schmitz U., Sethson I., Egan W., James T.L.: J. Mol. Biol.227, 510–531 (1992)

    Article  Google Scholar 

  34. Weisz K., Shafer R.H., Egan W., James T.L.: Biochemistry (1993), submitted.

  35. Mujeeb A., Kerwan S.M., Egan W., Kenyon G.L., James T.L.: Biochemistry (1993), in press.

  36. Ulyanov N.B., Gorin A.A., Zhurkin V.B., Chen B.-C., Sarma M.H., Sarma R.H.: Biochemistry31, 3918–3930 (1992)

    Article  Google Scholar 

  37. Kaluarachchi K., Meadows R.P., Gorenstein D.G.: Biochemistry30, 8785–8797 (1991)

    Article  Google Scholar 

  38. Satchwell S.C., Drew H.R., Travers A.A.: J. Mol. Biol.191, 659–675 (1986)

    Article  Google Scholar 

  39. Koudelka G.B., Harrison S.C., Ptashne M.: Nature (London)326, 886–889 (1987)

    Article  ADS  Google Scholar 

  40. Bracco L., Kotlarz D., Kolb A., Diekmann S., Buc H.: EMBO J.8, 4289–4296 (1989)

    Google Scholar 

  41. Lesser D.R., Kurpiewski M.R., Waters T., Connolly B.A., Jen-Jacobson L.: Proc. Natl. Acad. Sci. USA90, 7548–7552 (1993)

    Article  ADS  Google Scholar 

  42. James T.L.: Curr. Opinion Struct. Biol.1, 1042–1053 (1991)

    Article  Google Scholar 

  43. James T.L., Gochin M., Kerwood D.J., Pearlman D.A., Schmitz U., Thomas P.D. in: Computational Aspects of the Study of Biological Macromolecules by Nuclear Magnetic Resonance Spectroscopy (Hoch J.C., Poulsen F.M., Redfield C., eds.), pp. 331–347. New York: Plenum Press 1991.

    Google Scholar 

  44. Clark G.R., Brown D.G., Sanderson M.R., Chwalinski T., Neidle S., Veal J.M., Jones R.L., Wilson W.D., Zon G., Garman E.: Nucl. Acids Res.18, 5521–5528 (1990)

    Article  Google Scholar 

  45. Lipanov A., Kopka M.L., Kaczor-Grzeskowiak M., Quintana J., Dickerson R.E.: Biochemistry32, 1373–1389 (1993)

    Article  Google Scholar 

  46. Baikalov L., Grzeskowiak K., Yanagi K., Quintana J., Dickerson R.E.: J. Mol. Biol.231, 768–784 (1993)

    Article  Google Scholar 

  47. Wang J.C.: Proc. Natl. Acad. Sci. USA76, 200–203 (1979)

    Article  ADS  Google Scholar 

  48. Widmer H., Wüthrich K.: J. Magn. Reson.74, 316–336 (1987)

    Google Scholar 

  49. Schmitz U., Zon G., James T.L.: Biochemistry29, 2357–2368 (1990)

    Article  Google Scholar 

  50. Mujeeb A., Kerwan S.M., Egan W., Kenyon G.L., James T.L.: Biochemistry31, 9325–9338 (1992)

    Article  Google Scholar 

  51. Weisz K., Shafer R.H., Egan W., James T.L.: Biochemistry31, 7477–7487 (1992)

    Article  Google Scholar 

  52. Schmitz U., Ulyanov N.B., Kumar A., James T.L.: J. Mol. Biol. (1993), in press.

  53. Dickerson R.E., Bansal M., Calladine C.R., Diekmann S., Hunter W.N., Kennard O., Lavery R., Nelson H.C.M., Olson W.K., Saenger W., Shakked Z., Sklenar H., Soumpasis D.M., Tung C.-S., von Kitzing E., Wang A.H.-J., Zhurkin V.B.: J. Mol. Biol.205, 787–791 (1989)

    Article  Google Scholar 

  54. Yanagi K., Qrive G.G., Dickerson R.E.: J. Mol. Biol.217, 201–214 (1992)

    Article  Google Scholar 

  55. Lavery R., Sklenar H.: CURVES 3.0. Helical Analysis of Irregular Nucleic Acids. Paris: Laboratory for Theoretical Biology, CNRS 1990.

    Google Scholar 

  56. Calladine C.R.: J. Mol. Biol.161, 343–352 (1982)

    Article  Google Scholar 

  57. Strauss F., Gaillard C., Prunell A.: Eur. J. Biochem.118, 215–222 (1981)

    Article  Google Scholar 

  58. Selvin P.R., Cook D.N., Pon N.G., Bauer W.R., Klein M.P., Hearst J.E.: Science255, 82–85 (1992)

    Article  ADS  Google Scholar 

  59. Kabsch W., Sander C., Trifonov E.N.: Nucl. Acids Res.10, 1097–1104 (1982)

    Article  Google Scholar 

  60. Zhurkin V.B., Gorin A.A., Charakhchyan A.A., Ulyanov N.B. in: Theoretical Biochemistry & Molecular Biophysics (Beveridge D.L., Lavery R., eds.), pp. 411–431. New York: Adenine 1990.

    Google Scholar 

  61. Poncin M., Hartmann B., Lavery R.: J. Mol. Biol.226, 775–794 (1992)

    Article  Google Scholar 

  62. Ulyanov N.B., Zhurkin V.B.: J. Biomol. Struct. Dyn.2, 361–385 (1984)

    Google Scholar 

  63. Zhurkin V.B., Lysov Yu.P., Ivanov V.I.: Nucl. Acids Res.6, 1081–1096 (1979)

    Article  Google Scholar 

  64. Keepers J.W., Kollman P.A., Weiner P.K., James T.L.: Proc. Natl. Acad. Sci. USA79, 5537–5541 (1982)

    Article  ADS  Google Scholar 

  65. Yuan H., Quintana J., Dickerson R.E.: Biochemistry31, 8009–8021 (1992)

    Article  Google Scholar 

  66. Prive G.G., Yanagi K., Dickerson R.E.: J. Mol. Biol.217, 177–199 (1991)

    Article  Google Scholar 

  67. Arnott S., Hukins D.W.L.: Biochem. Biophys. Res. Comm.47, 1504–1509 (1972)

    Article  Google Scholar 

  68. Zhurkin V.B., Lysov Yu.P., Ivanov V.I.: Biopolymers17, 377–412 (1978)

    Article  Google Scholar 

  69. DiGabriele A., Steitz T.A.: J. Mol. Biol.231, 1024–1039 (1993)

    Article  Google Scholar 

  70. Bolshoy A.A., McNamara P., Harrington R.E., Trifonov E.N.: Proc. Natl. Acad. Sci. USA88, 2312–2316 (1991)

    Article  ADS  Google Scholar 

  71. Celda B., Widmer H., Chazin W.J., Denny W.A., Wüthrich K.: Biochemistry28, 1462–1471 (1989)

    Article  Google Scholar 

  72. Alam T.M., Drobny G.: Chem. Rev.91, 1545–1590 (1991)

    Article  Google Scholar 

  73. Kennedy M.A., Nuutero S.T., Davis J.T., Drobny G.P., Reid B.R.: Biochemistry32, 8022–8035 (1993)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ulyanov, N.B., James, T.L. Statistical analysis of DNA duplex structures in solution derived by high resolution NMR. Appl. Magn. Reson. 7, 21–42 (1994). https://doi.org/10.1007/BF03162545

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03162545

Keywords

Navigation