Skip to main content
Log in

Transfer matrix method for optimizing quasioptical EPR cavities

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

We present a convenient method for characterizing and optimizing the performance of quasioptical electron paramagnetic resonance (EPR) sample cavities. The formalism is based on the transfer matrix method used in transmission line analysis. Transfer matrix representations are defined for each of the essential components of an open resonator, and the method is demonstrated by application to selected practical examples. Emphasis is given to optimization of quasioptical EPR for aqueous biological samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barnes J.P., Freed J.H.: Rev. Sci. Instrum.68, 2838–2846 (1997)

    Article  ADS  Google Scholar 

  2. Cardin J.T., Kolaczkowski S.V., Anderson J.R., Budil D.E.: Appl. Magn. Reson.16, 273–292 (1999)

    Google Scholar 

  3. Earle K.A., Freed J.H.: Appl. Magn. Reson.16, 247–272 (1999)

    Article  Google Scholar 

  4. Collin R.E.: Foundations for Microwave Engineering, 2nd edn. New York: McGraw-Hill 1992.

    Google Scholar 

  5. Budil D.E., Ding Z., Smith G.R., Earle K.A.: J. Magn. Reson.144, 20–34 (2000)

    Article  ADS  Google Scholar 

  6. Born M., Wolf E.: Optics, 6th edn. Oxford: Pergamon Press 1980.

    Google Scholar 

  7. Lesurf J.C.G.: Millimetre-Wave Optics, Devices, and Systems. Bristol: Adam Hilger 1990.

    Google Scholar 

  8. Ulrich R.: Infrared Phys.7, 37–55 (1967)

    Article  ADS  Google Scholar 

  9. Goldsmith P.F. in: Infrared and Millimeter Waves (Button K., ed.), vol. 6, pp. 277–344. New York: Academic Press 1982.

    Google Scholar 

  10. Montgomery C.G., Dicke R.H., Purcell E.M.: Principles of Microwave Circuits. New York: McGraw-Hill 1948.

    Google Scholar 

  11. Harvey A.F.: Microwave Engineering. New York: Academic Press 1963.

    MATH  Google Scholar 

  12. Goldsmith P.F.: Quasioptical Systems. Piscataway, NJ: IEEE Press/Chapman and Hall 1998.

    Google Scholar 

  13. Barthel J., Bachhuber K., Buchner R., Hetzenauer H.: Chem. Phys. Lett.165, 369 (1990)

    Article  ADS  Google Scholar 

  14. Hasted J.B., Husain S.K., Frescura F.A.M., Birch J.R.: Chem. Phys. Lett.118, 622–625 (1985)

    Article  ADS  Google Scholar 

  15. Hasted J.B., Husain S.K., Frescura F.A.M., Birch J.R.: Infrared Phys.27, 11–15 (1987)

    Article  ADS  Google Scholar 

  16. Afsar M.N., Hasted J.B.: J. Opt. Soc. Am.67, 902–904 (1977)

    Article  ADS  Google Scholar 

  17. Hasted J.B.: Aqueous Dielectrics. London: Chapman and Hall 1973.

    Google Scholar 

  18. Wei Y.Z., Sridhar S.J.: Chem. Phys.92, 923–928 (1990)

    ADS  Google Scholar 

  19. Wei Y.Z., Sage J.T., Tian W.D., Kumbharkhane A.C., Sadeghi M., Champion P.M., Sridhar S., McDonald M.J.: J. Phys. Chem.98, 6644–6651 (1994)

    Article  Google Scholar 

  20. Buckley F., Maryott A.A.: Tables of Dielectric Dispersion Data for Pure Liquids and Dilute Solutions. Washington, D.C.: National Bureau of Standards 1958.

    Google Scholar 

  21. Press W.H., Teukolsky S.A., Vetterling W.T., Flannery B.P.: Numerical Recipes in C: The Art of Scientific Computing, 2nd edn. New York: Cambridge University Press 1992.

    Google Scholar 

  22. The Math Works, I. MATLAB, 5.3.1 edn. Natick, MA: The Math Works, Inc. 1998.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Earle, K.A., Zeng, R. & Budil, D.E. Transfer matrix method for optimizing quasioptical EPR cavities. Appl. Magn. Reson. 21, 275–286 (2001). https://doi.org/10.1007/BF03162407

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03162407

Keywords

Navigation