Skip to main content
Log in

Quasioptical hardware for a flexible FIR-EPR spectrometer

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

In this paper we present and summarize recent accomplishments of the Freed High Field Electron Paramagnetic Resonance group. In particular, we discuss the application of quasioptical design techniques to instrumentation problems in the far-infrared. We stress that there is no “universal spectrometer” or “universal resonator”. Rather, we demonstrate with a variety of examples from the liquid and solid state that the spectrometer configuration and the resonator used should be optimized for the experiment at hand in order to achieve the ultimate in sensitivity. Quasioptical techniques and methods of analysis offer a unified framework to analyze the expected performance of a proposed spectrometer design, as well as suggest the important control parameters for optimizing the sensitivity of a given experiment as we show in the text. The flexibility of quasioptical methods will also be demonstrated with a variety of resonator designs and sample configurations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lebedev Ya. in: Modern Pulsed and Continuous-Wave Electron Spin Resonance (Kevan L., Bowman M., eds.), pp. 365–404. New York: Wiley 1990.

    Google Scholar 

  2. Budil D.E., Earle K.A., Lynch W.B., Freed J.H. in: Advanced EPR: Applications in Biology and Biochemistry (Hoff A.J., ed.), pp. 307–340. Amsterdam: Elsevier 1989.

    Google Scholar 

  3. Earle K.A., Budil D.E., Freed J.H. in: Advances in Magnetic and Optical Resonance (Warren S.W., ed.), vol. 19, pp. 253–323. New York: Academic Press 1996.

    Chapter  Google Scholar 

  4. Abragam A., Bleaney B.: Electron Paramagnetic Resonance of Transition Ions, pp. 125–132. New York: Dover 1986.

    Google Scholar 

  5. Eaton G.R., Eaton S.S., Rinard G.A. in: Spatially Resolved Magnetic Resonance: Methods, Materials, Medicine, Biology, Rheology, Geology, Ecology, Hardware (Blümer P., Blümich P., Botto R., Fukushima E., eds.), pp. 65–74. Weinheim: Wiley VCH 1998.

    Google Scholar 

  6. Galkin A.A., Grinberg O.Ya., Dubinskii A.A., Kabdin N.N., Krymov V.N., Kurochkin V.I., Lebedev Ya.S., Oranskii L.G., Shuvalov V.F.: Instrum. Exp. Tech. (Engl. Transi.)20, 1229 (1977)

    Google Scholar 

  7. Krymov V.N., Kurochkin V.I.: Projektirovaniye UHF chasty 2mm spectrometrov EPR (in Russian). Donetskii physico-technicheskii instituta Akademii Nauk Ukrainian SSR, Donetsk, 1985 (preprint).

  8. Prisner T., Un S., Griffin R.G.: Isr. J. Chem.32, 357–363 (1992)

    Google Scholar 

  9. Allgeier J., Disselhorst J.A.J.M., Weber R.T., Wenckebach W.Th., Schmidt J. in: Modern Pulsed and Continuous-Wave Electron Spin Resonance (Kevan L., Bowman M., eds.), pp. 267–284. New York: Wiley 1990.

    Google Scholar 

  10. Haindl E., Möbius K., Oloff H.: Z. Naturforsch. A40, 169–172 (1985)

    ADS  Google Scholar 

  11. Lynch W.B., Earle K.A., Freed J.H.: Rev. Sci. Instrum.59, 1345–1351 (1988)

    Article  ADS  Google Scholar 

  12. Earle K.A., Tipikin D.S., Freed J.H.: Rev. Sci. Instrum.67, 2502–2513 (1996)

    Article  ADS  Google Scholar 

  13. Hassan A.K., Maniero A.-L., van Tol H., Brunel L.C. in: Magnetic Resonance and Related Phenomena (Ziessow D., Lubitz W., Lendzian F., eds.), pp. 121–122. Joint 29th Ampere — 13th ISMAR International Conference, Berlin August 2–7, 1998. Technische Universität Berlin: Berlin 1998.

    Google Scholar 

  14. Cardin J.T., Kolaczkowski S.V., Anderson J.R., Budil D.E.: Appl. Magn. Reson.16, 273–292 (1999)

    Article  Google Scholar 

  15. Fuchs M., Weber S., Möbius K., Rohrer M., Prisner T. in: Magnetic Resonance and Related Phenomena (Ziessow D., Lubitz W., Lendzian F., eds.), pp. 119–120. Joint 29th Ampere — 13th ISMAR International Conference, Berlin August 2–7, 1998. Technische Universität Berlin: Berlin 1998.

    Google Scholar 

  16. Smith G.M., Lesurf J.C.G., Mitchell R.H., Riedi P.C.: Rev. Sci. Instrum.69, 3924–3937 (1998)

    Article  ADS  Google Scholar 

  17. Goldsmith P.F.: Quasioptical Systems: Gaussian Beam Quasioptical Propagation and Applications. New York: IEEE Press 1998.

    Google Scholar 

  18. Misra S.K., Misiak L.E., Chand P.: Physica B202, 31–40 (1994)

    Article  ADS  Google Scholar 

  19. Earle K.A., Budil D.E., Freed J.H.: J. Phys. Chem.97, 13289 (1993)

    Article  Google Scholar 

  20. Barnes J.P., Freed J.H.: Rev. Sci. Instrum.69, 3022–3027 (1998)

    Article  ADS  Google Scholar 

  21. Barnes J.P., Freed J.H.: Biophys. J.75, 2532–2546 (1998)

    Article  ADS  Google Scholar 

  22. Earle K.A., Moscicki J.K., Polimeno A., Freed J.H.: J. Chem. Phys.106, 9996–10015 (1997)

    Article  ADS  Google Scholar 

  23. Lynch W.B., Boorse R.S., Freed J.H.: J. Am. Chem. Soc.115, 10909–10915 (1993)

    Article  Google Scholar 

  24. Shin D.-H., Dye J.L., Budil D.E., Earle K.A., Freed J.H.: J. Phys. Chem.97, 1213–1219 (1993)

    Article  Google Scholar 

  25. Earle K.A., Budil D.E., Moscicki J.K., Ge M., Freed J.H.: Biophys. J.66, 1213–1221 (1994)

    Article  Google Scholar 

  26. Barnes J.P., Freed J.H.: Rev. Sci. Instrum.68, 2838–2846 (1997)

    Article  ADS  Google Scholar 

  27. Barnes J.P., Liang Z., Mchaourab H., Freed J.H., Hubbell W.: Biophys. J. (1999) in press.

  28. Clarkson R.B., Smirnov A.I., Smirnova T.I., Kang H., Belford R.L., Earle K.A., Freed J.H.: Mol. Phys.95 1325–1332 (1998)

    ADS  Google Scholar 

  29. Poole C. Jr.: Electron Spin Resonance: A Comprehensive Treatise on Experimental Techniques, 2nd ed., pp. 381–458. New York: Dover 1983.

    Google Scholar 

  30. Doane J. in: Infrared and Millimeter Waves (Button K., ed.), vol. 13, pp. 123–170. New York: Wiley 1985.

    Google Scholar 

  31. General Atomics, “Corrugated Waveguides: Capabilities & Applications” Design Guide. New York: Dover 1995.

    Google Scholar 

  32. Jiang Y., Jing C., Peebles W.A., Bowers D.L., Doane J.L.: Rev. Sci. Instrum.63, 4672–4674 (1992)

    Article  ADS  Google Scholar 

  33. Dragovan M.: Appl. Opt.27, 4076–4078 (1988)

    Article  ADS  Google Scholar 

  34. Dionne G.F.: Int. J. Infrared Millimeter Waves3, 417–423 (1982)

    Article  ADS  Google Scholar 

  35. Erickson N.R.: Appl. Opt.18, 956 (1979)

    Article  ADS  Google Scholar 

  36. Costley A.E., Hursey K.H., Neill G.F., Ward J.M.: J. Opt. Soc. Am.67, 979–981 (1977)

    Article  ADS  Google Scholar 

  37. Möbius K., Lubitz W., Plato M. in: Advanced EPR: Applications in Biology and Biochemistry (Hoff A., ed.), pp. 441–500. Amsterdam: Elsevier 1989.

    Google Scholar 

  38. Lesurf J.C.G.: Millimetre-Wave Optics, Devices, and Systems. Bristol: Adam Hilger 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Earle, K.A., Freed, J.H. Quasioptical hardware for a flexible FIR-EPR spectrometer. Appl. Magn. Reson. 16, 247–272 (1999). https://doi.org/10.1007/BF03161937

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03161937

Keywords

Navigation