Skip to main content
Log in

Thermal Effects That Arise upon Different Heat Treatments in Austenitic Steels Alloyed with Titanium and Phosphorus

  • Structure, Phase Transformations, and Diffusion
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

Structural and microstructural changes that arise in the course of the heat treatment of Cr–Ni–Mo austenitic stainless steels with different concentrations of titanium and phosphorus have been studied. It has been found that the alloying with phosphorus decreases the lattice parameter of these steels. The phosphorus contribution to this effect is 0.015 ± 0.002 Å/at %. Aging at a temperature of 670 K for about 20 h leads to the precipitation of dispersed needle-like particles, which are most likely to be iron phosphides. In the temperature range of 700–800 K, in austenitic steels, the atomic separation of the solid solution occurs, the intensity of which decreases upon alloying with titanium or phosphorus at concentrations of 1.0 and 0.1 wt %, respectively. At higher temperatures (about 950 K), the formed precipitates of the Ni3Ti (γ') phase increase in size to 7–10 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. J. Maziasz, “Formation and stability of radiationinduced phases in neutron irradiated austenitic and ferritic steels,” J. Nucl. Mater. 169, 95–115 (1989).

    Article  Google Scholar 

  2. T. Okita, W. G. Wolfer, F. A. Garner, and N. Sekimura, “Effects of titanium additions to austenitic ternary alloys on microstructural evolution and void swelling,” Philos. Mag. 85, 2033–2048 (2005).

    Article  Google Scholar 

  3. V. V. Sagaradze, V. M. Nalesnik, S. S. Lapin, and V. M. Aliabev, “Precipitation hardening and radiation damageability of austenitic stainless steels,” J. Nucl. Mater. 202, 137–144 (1993).

    Article  Google Scholar 

  4. C. David, B. K. Panigrahi, S. Balaji, A. K. Balamurugan, K. G. M. Nair, G. Amarendra, C. S. Sundar, and R. Baldev, “A Study of the effect of titanium on the void swelling behavior of D9 steels by ion beam simulation,” J. Nucl. Mater. 383, 132–136 (2008).

    Article  Google Scholar 

  5. H. Kurishita, T. Muroga, H. Watanabe, N. Yoshida, H. Kayano, and M. L. Hamilton, “Effect of FFTF irradiation on tensile properties of P- and Ti-modified model austenitic alloys with small amounts of boron,” J. Nucl. Mater. 212, 519–524 (1994).

    Article  Google Scholar 

  6. I. Shibahara, N. Akasaka, S. Onose, H. Okada, and S. Ukai, “Swelling of advanced austenitic stainless steels developed for the environment of heavy neutron exposure,” J. Nucl. Mater. 212–215, 487–491 (1994).

    Article  Google Scholar 

  7. F. A. Garner and W. G. Wolfer, “The effect of solute additions on void nucleation,” J. Nucl. Mater. 102, 143–150 (1981).

    Article  Google Scholar 

  8. H. Watanabe, A. Aoki, H. Murakami, T. Muroga, and N. Yoshida, “Effects of phosphorus on defect behavior, solute segregation and void swelling in electron irradiated Fe–Cr–Ni alloys,” J. Nucl. Mater. 155–157, 815–822.

  9. T. Muroga, F. A. Garner, and J. M. McCarthy, “The Effect of phosphorous on microstructures of Fe–15Cr–25Ni alloys irradiated with fast neutrons,” J. Nucl. Mater. 168, 109–120 (1989).

    Article  Google Scholar 

  10. H. Watanabe, T. Muroga, and N. Yoshida, “The temperature dependent role of phosphorus and titanium in microstructural evolution of Fe–Cr–Ni alloys irradiated in FFTF,” J. Nucl. Mater. 228, 261–274 (1996).

    Article  Google Scholar 

  11. S. E. Danilov, V. L. Arbuzov, and V. A. Kazantsev, “Radiation-induced separation of solid solution in Fe‒Ni invar,” J. Nucl. Mater. 414, 200–204 (2011).

    Article  Google Scholar 

  12. N. N. Alekseenko, A. D. Amaev, I. V. Gorynin, and V. A. Nikolaev, Radiation Damage of Nuclear Power Plant Pressure Vessel Steels (Am. Nucl. Soc., La Grange Park, IL, 1997; Energoatomizdat, Moscow, 1981).

    Google Scholar 

  13. H. M. Rietveld, “A Profile Refinement Method for Nuclear and Magnetic Structures,” J. Appl. Crystallogr. 2, 65–71 (1969).

    Article  Google Scholar 

  14. J. Rodriges-Carvajal, “Recent advances in magnetic structure determination by neutron powder diffraction,” Physica A 192, 55–69 (1993).

    Article  Google Scholar 

  15. V. L. Arbuzov and S. E. Danilov, “Effect of titanium doping on accumulation and annealing of radiation defects in austenitic steel 16Cr15Ni3Mo(0-1)Ti at low temperature (80 K) electron irradiation,” IOP Conf. Series: Materials Science and Engineering 110, 012033 (2016).

    Article  Google Scholar 

  16. V. L. Arbuzov, K. V. Shalnov, S. E. Danilov, A. E. Davletshin, N. L. Pecherkina, and V. V. Sagaradze, “Observation of segregation deposits in iron–nickel–titanium alloy using scanning tunneling microscopy,” Tech. Phys. Lett. 25, 134–135 (1999).

    Article  Google Scholar 

  17. E. Gudremon, Special Steels, Ed. by A.S. Zaimovskii, M.L. Bernshtein, and V.S. Mes’kin, Edition 2 (Metallurgiya, Moscow, 1966) [in Russian].

  18. E. H. Lee and L. K. Mansur, “A Mechanism of Swelling Suppression in Phosphorous-Modified Fe–Ni–Cr Alloys,” J. Nucl. Mater. 141–143, 695–702 (1986).

    Article  Google Scholar 

  19. N. Akasaka, K. Hattori, S. Onose, and S. Ukai, “Effect of Temperature Change on Void Swelling in P, Ti-Modified 316 Stainless Steel,” J. Nucl. Mater. 271–272, 370–375 (1999).

    Article  Google Scholar 

  20. K. Fukuya, S. Nakahigashi, S. Ozaki, and S. Shima, “Effect of Phosphorus, Silicon and Sulphur on Microstructural Evolution in Austenitic Stainless Steels During Electron Irradiation,” J. Nucl. Mater. 179–181, 1057–1060 (1999).

    Google Scholar 

  21. V. L. Arbuzov, S. E. Danilov, V. A. Kazantsev, and V. V. Sagaradze, “Radiation-Induced Strengthening of Al- and Ti-Modified Fe-Ni Alloys During Electron Irradiation,” Phys. Met. Metallogr. 115, 1017–1022 (2011).

    Article  Google Scholar 

  22. A. P. Druzhkov, V. L. Arbuzov, D. A. Perminov, and K. V. Shal’nov, “Effect of Precipitate Particles of Intermetallic Compounds on the Accumulation of Radiation Defects in Austenitic Fe–Ni–Ti Alloys,” Phys. Met. Metallogr. 96, 509–513 (2003).

    Google Scholar 

  23. V. L. Arbuzov, B. N. Goshchitskii, S. E. Danilov, A. V. Kar’kin, and D. A. Perminov, “Effect of Neutron and Electron Irradiation on Radiation-Induced Separation of Solid Solutions in the Fe–Ni and Fe–Ni–P Alloys,” Phys. Met. Metallogr. 106, 266–275 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Bobrovskii.

Additional information

Original Russian Text © V.L. Arbuzov, I.F. Berger, V.I. Bobrovskii, V.I. Voronin, S.E. Danilov, V.A. Kazantsev, N.V. Kataev, V.V. Sagaradze, 2018, published in Fizika Metallov i Metallovedenie, 2018, Vol. 119, No. 4, pp. 387–392.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arbuzov, V.L., Berger, I.F., Bobrovskii, V.I. et al. Thermal Effects That Arise upon Different Heat Treatments in Austenitic Steels Alloyed with Titanium and Phosphorus. Phys. Metals Metallogr. 119, 368–373 (2018). https://doi.org/10.1134/S0031918X18040026

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X18040026

Keywords

Navigation