Skip to main content
Log in

Genetic risk factors and restenosis after percutaneous coronary interventions

Genetische Risikofaktoren und Restenose nach perkutanen Koronarinterventionen

  • Published:
Herz Aims and scope Submit manuscript

Abstract

Restenosis is the major limitation of percutaneous coronary interventions. Depending on the form of intervention and patients' characteristics, 20 to 50% of the treated patients incur significant restenosis. Restenosis is caused by a complex and only partially understood cascade of events. Thrombus formation at the injury site, formation of the neointima as a result of the migration and proliferation of smooth muscle cells (SMC) and extracellular matrix production, as well as constrictive remodeling of the vessel wall contribute by a variable degree to restenosis.

Restenosis is not a random event but it affects selectively a certain subset of patients. These patients have some peculiar characteristics that help to identify the presence of a higher risk for restenosis. Conventional patient-related factors account only for a relatively small portion of the predictive power, much more contribution comes from lesion and procedural characteristics. There is increasing evidence that inherited factors may explain at least part of the excessive risk for restenosis observed in certain patients.

Evidence exists that gene polymorphisms may lead to quantitative or functional alterations of the respective gene products. Recent studies have also found significant associations between several polymorphic alleles encoding for proteins with a relevant role in the process of lumen renarrowing and restenosis after percutaneous coronary interventions. The best studied polymorphisms in this regard are those of the genes encoding for angiotensin-converting enzyme and platelet glycoprotein-IIIa. Completed or ongoing studies have focused on polymorphisms of genes encoding for proteins interfering with lipid metabolism, hemostasis, nitric oxide production, inflammatory mechanisms, SMC proliferation and matrix production. The results of this research will have considerable pathophysiological and therapeutical implications for the battle against restenosis.

Zusammenfassung

Die Restenose stellt heute die wesentliche Limitation perkutaner Koronarinterventionen dar. Abhängig von der Art der Intervention und von Patientencharakteristika entwickeln 20 bis 50% der Patienten eine signifikante Restenosierung. Eine komplexe, bislang nur teilweise aufgeklärte Kaskade von Ereignissen führt zur erneuten Lumeneinengung. Thrombusformation an der interventionsbedingten Verletzungsstelle, Neointimabildung, Folge der Migration und Proliferation glatter Gefäßmuskelzellen und die Produktion extrazellulärer Matrix sowie ein negatives (konstriktives) Remodelling der Gefäßwand tragen in unterschiedlichem Ausmaß zur Restenose bei.

Ihre Entwicklung ist kein Ereignis, das zufällig bei einem Teil der Patienten auftritt, vielmehr ist selektiv eine bestimmte Subpopulation betroffen. Diese Patienten weisen einige Besonderheiten auf, die dazu beitragen, ein erhöhtes Restenoserisiko zu charakterisieren. Dabei ist die Bedeutung konventioneller, patientenbezogener Faktoren für die Prädiktion einer Restenose relativ gering, während läsionsbezogene und prozedurale Charakteristika sehr viel stärkere Prädiktoren sind. Darüber hinaus mehren sich die Hinweise, daß genetische Faktoren zumindest teilweise das exzessive Restenoserisiko bestimmter Patienten erklären können.

Genpolymorphismen können zu quantitativen oder funktionellen Veränderungen des jeweiligen Genprodukts führen. Neuere Untersuchungen zeigten eine signifikante Assoziation zwischen Restenose nach Koronarintervention und verschiedenen polymorphen Allelen, die für Proteine kodieren, die beim Restenoseprozeß von Relevanz sind. Diesbezüglich am besten untersucht sind Polymorphismen jener Gene, die für das Angiotensinkonversionsenzym und für thrombozytäres Glycoprotein IIIa kodieren.

Eine Vielzahl abgeschlossener und noch laufender Studien konzentriert sich auf Polymorphismen in Genen, die für Proteine kodieren, welche mit dem Lipidmetabolismus, der Hämostase, der NO-Produktion, den inflammatorischen Mechanismen, der Proliferation glatter Gefäßmuskelzellen und der Matrixproduktion interferieren. Die Ergebnisse dieser Forschung werden wesentliche pathophysiologische und therapeutische Implikationen für den Kampf gegen die Restenose haben.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abbate R, Marcucci R, Camacho-Vanegas O, et al. Role of platelet glycoprotein PL(A1/A2) polymorphism in restenosis after percutaneous transluminal coronary angioplasty. Am J Cardiol 1998;82:524–5.

    Article  PubMed  CAS  Google Scholar 

  2. Amant C, Bauters C, Bodart JC, et al. D allele of the angiotensin I-converting enzyme is a major risk factor for restenosis after coronary stenting. Circulation 1997;96:56–60.

    PubMed  CAS  Google Scholar 

  3. Amouyel P, Bauters C, Meihaeghe A, et al. The 5A6A polymorphism in the promoter of the stromelysin-1 gene as a risk factor for restenosis. Eur Heart J 1999;20:Suppl:601.

    Google Scholar 

  4. Anderson JL, Carlquist JF, King GJ, et al. Angiotensin-converting enzyme genotypes and risk for myocardial infarction in women. J Am Coll Cardiol 1998;31:790–6.

    Article  PubMed  CAS  Google Scholar 

  5. Arca M, Pannitteri G, Campagna F, et al. Angiotensin-converting enzyme gene polymorphism is not associated with coronary atherosclerosis and myocardial infarction in a sample of Italian patients. Eur J Clin Invest 1998;28:485–90.

    Article  PubMed  CAS  Google Scholar 

  6. Batchelor WB, Robinson R, Strauss BH. The extracellular matrix in balloon arterial injury: a novel target for restenosis prevention. Prog Cardiovasc Dis 1998;41:35–49.

    Article  PubMed  CAS  Google Scholar 

  7. Bauters C, Amouyel P. Association between the ACE genotype and coronary artery disease. Insights from studies on restenosis, vasomotion and thrombosis. Eur Heart J 1998;19:Suppl 1:124–9.

    Google Scholar 

  8. Beohar N, Damaraju S, Prather A, et al. Angiotensin-I converting enzyme genotype DD is a risk factor for coronary artery disease. J Invest Med 1995;43:275–80.

    CAS  Google Scholar 

  9. Bohn M, Berge KE, Bakken A, et al. Insertion/deletion (I/D) polymorphism at the locus for angiotensin I- converting enzyme and myocardial infarction. Clin Genet 1993;44:292–7.

    PubMed  CAS  Google Scholar 

  10. Bonithon-Kopp C, Ducimetiere P, Touboul PJ, et al. Plasma angiotensin-converting enzyme activity and carotid wall thickening. Circulation 1994;89:952–4.

    PubMed  CAS  Google Scholar 

  11. Böttiger C, Kastrati A, Koch W, et al. Polymorphism of platelet glycoprotein IIb and risk of thrombosis and restenosis after coronary stent placement. Am J Cardiol 1999;99:987–91.

    Article  Google Scholar 

  12. Calvette JJ. On the structure and function of platelet integrin al-Ibb3, the fibrinogen receptor. Proc Soc Exp Biol Med 1995;208:346–60.

    Google Scholar 

  13. Cambien F. The angiotensin-converting enzyme (ACE) genetic polymorphism: its relationship with plasma ACE level and myocardial infarction. Clin Genet 1994;46:94–101.

    PubMed  CAS  Google Scholar 

  14. Cambien F, Alhenc-Gelas F, Herbeth B, et al. Familial resemblance of plasma angiotensin-converting enzyme level: the Nancy Study. Am J Hum Genet 1988;43:774–80.

    PubMed  CAS  Google Scholar 

  15. Cambien F, Costerousse O, Tiret L, et al. Plasma level and gene polymorphism of angiotensin-converting enzyme in relation to myocardial infarction. Circulation 1994;90:669–76.

    PubMed  CAS  Google Scholar 

  16. Cambien F, Poirier O, Lecerf L, et al. Deletion polymorphism in the gene for angiotensin-converting enzyme is a potent risk factor for myocardial infarction. Nature 1992;359:641–4.

    Article  PubMed  CAS  Google Scholar 

  17. Carter AM, Ossei-Gerning N, Wilson IJ, et al. Association of the platelet PIA polymorphism of glycoprotein IIb/IIIa and the fibrinogen Bb 448 polymorphism with myocardial infarction and extent of coronary artery disease. Circulation 1997;96:1424–31.

    PubMed  CAS  Google Scholar 

  18. Castellano M, Muiesan ML, Rizzoni D, et al. Angiotensin-converting enzyme I/D polymorphism and arterial wall thickness in a general population. The Vobarno Study. Circulation 1995;91:2721–4.

    PubMed  CAS  Google Scholar 

  19. Corral J, Gonzalez-Conejero R, Rivera J, et al. HPA-1 genotype in arterial thrombosis--role of HPA-1b polymorphism in platelet function. Blood Coagul Fibrinolysis 1997;8:284–90.

    Article  PubMed  CAS  Google Scholar 

  20. Cura FA, L'Allier PL, Sapp S, et al. Comparison of the protection against restenosis afforded by stenting or abciximab (abstract). J Am Coll Cardiol 1999;33:Suppl A:11A.

    Google Scholar 

  21. Durante-Mangoni E, Davies GJ, Ahmed N, et al. Coronary thrombosis and the platelet glycoprotein IIIA gene PLA2 polymorphism. Thromb Haemost 1998;80:218–9.

    PubMed  CAS  Google Scholar 

  22. Dzau VJ. Cell biology and genetics of angiotensin in cardiovascular disease. J Hypertens Suppl 1994;12:S3–10.

    Google Scholar 

  23. Erbel R, Haude M, Hopp HW, et al. Coronary-artery stenting compared with balloon angioplasty for restenosis after initial balloon angioplasty. N Engl J Med 1998;339:1672–8.

    Article  PubMed  CAS  Google Scholar 

  24. Faraday N, Goldschmidt-Clermont PJ, Bray PF. Gender differences in platelet GP IIb-IIIa activation. Thromb Haemost 1997; 77:748–54.

    PubMed  CAS  Google Scholar 

  25. Feng D, Lindpaintner K, Larson MG, et al. Increased platelet aggregability associated with platelet GP IIIa PIA2 polymorphism: the Framingham Offspring Study. Arterioscler Thromb Vasc Biol 1999;19:1142–7.

    PubMed  CAS  Google Scholar 

  26. Fischman DL, Leon MB, Baim DS, et al. A randomized comparison of coronary-stent placement and balloon angioplasty in the treatment of coronary artery disease. N Engl J Med 1994;331:96–501.

    Article  Google Scholar 

  27. Foy CA, Rice GI, Ossei-Gerning N, et al. Angiotensin-converting enzyme (ACE) gene polymorphisms in patients characterised by coronary angiography. Hum Genet 1997;100:420–5.

    Article  PubMed  CAS  Google Scholar 

  28. Friedl W, Krempler F, Paulweber B, et al. A deletion polymorphism in the angiotensin converting enzyme gene is not associated with coronary heart disease in an Austrian population. Atherosclerosis 1995;112:137–43.

    Article  PubMed  CAS  Google Scholar 

  29. Garcia-Ribes M, Gonzalez-Lamuno D, Hernandez-Estefania R, et al. Polymorphism of the platelet glycoprotein IIIa gene in patients with coronary stenosis. Thromb Haemost 1998;79:1126–9.

    PubMed  CAS  Google Scholar 

  30. Gardemann A, Fink M, Stricker J, et al. ACE I/D gene polymorphism: presence of the ACE D allele increases the risk of coronary artery disease in younger individuals. Atherosclerosis 1998;139:153–9.

    Article  PubMed  CAS  Google Scholar 

  31. Gardemann A, Humme J, Stricker J, et al. Association of the platelet glycoprotein IIIa PIA1/A2 gene polymorphism to coronary artery disease but not to nonfatal myocardial infarction in low risk patients. Thromb Haemost 1998;80:214–7.

    PubMed  CAS  Google Scholar 

  32. Gardemann A, Weiss T, Schwartz O, et al. Gene polymorphism but not catalytic activity of angiotensin I- converting enzyme is associated with coronary artery disease and myocardial infarction in low-risk patients. Circulation 1995;92:2796–9.

    PubMed  CAS  Google Scholar 

  33. Goodall AH, Curzen N, Panesar M, et al. Increased binding of fibrinogen to glycoprotein IIIa-Proline33 (HPA-1b, PIA2, Zwb) positive platelets in patients with cardiovascular disease. Eur Heart J 1998;20:742–7.

    Article  Google Scholar 

  34. Cruntzig AR, Senning A, Siegenthaler WE. Nonoperative dilatation of coronary-artery stenosis: percutaneous transluminal coronary angioplasty. N Engl J Med 1979;301:61–8.

    Google Scholar 

  35. Haberbosch W, Bohle RM, Franke FE, et al. The expression of angiotensin-I converting enzyme in human atherosclerotic plaques is not related to the deletion/insertion polymorphism but to the risk of restenosis after coronary interventions. Atherosclerosis 1997;130:203–13.

    Article  PubMed  CAS  Google Scholar 

  36. Hamon M, Bauters C, Amant C, et al. Relation between the deletion polymorphism of the angiotensin-converting enzyme gene and late luminal narrowing after coronary angioplasty. Circulation 1995;92:296–9.

    PubMed  CAS  Google Scholar 

  37. Hato T, Minamoto Y, Fukuyama T, et al. Polymorphism of HPA-1 through 6 on platelet membrane glycoprotein receptors are not a genetic risk factor for myocardial infarction in the Japanese population. Am J Cardiol 1997;80:1222–4.

    Article  PubMed  CAS  Google Scholar 

  38. Hoffmann R, Mintz GS, Dussaillant GR, et al. Patterns and mechanisms of in-stent restenosis. A serial intravascular ultrasound study. Circulation 1996;94:1247–54.

    PubMed  CAS  Google Scholar 

  39. Hosoi M, Nishizawa Y, Kogawa K, et al. Angiotensin-converting enzyme gene polymorphism is associated with carotid arterial wall thickness in non-insulin-dependent diabetic patients. Circulation 1996;94:704–7.

    PubMed  CAS  Google Scholar 

  40. Huang XH, Rantalaiho V, Wirta O, et al. Angiotensin-converting enzyme gene polymorphism is associated with coronary heart disease in non-insulin-dependent diabetic patients evaluated for 9 years. Metabolism 1998;47:1258–62.

    Article  PubMed  CAS  Google Scholar 

  41. Ip JH, Fuster V, Israel D, et al. The role of platelets, thrombin and hyperplasia in restenosis after coronary angioplasty. J Am Coll Cardiol 1991;17:77B-88B.

    PubMed  CAS  Google Scholar 

  42. Jeunemaitre X, Ledru F, Battaglia S, et al. Genetic polymorphisms of the renin-angiotensin system and angiographic extent and severity of coronary artery disease: the CORGENE study. Hum Genet 1997;99:66–73.

    Article  PubMed  CAS  Google Scholar 

  43. Jin J, Kunapuli SP. Coactivation of two different G protein-coupled receptors is essential for ADP-induced platelet aggregation. Proc Natl Acad Sci USA 1998;95:8070–4.

    Article  PubMed  CAS  Google Scholar 

  44. Kastrati A, Gawaz M, Koch W, et al. Patients homozygous for the PIA2 allele coding for platelet glycoprotein IIIa are at increased risk for stent vessel thrombosis after coronary stent placement. Eur Heart J 1998;19:Suppl:360.abstract.

    Google Scholar 

  45. Kastrati A, Mehilli J, Hadamitzky M, et al. Influence of patients, lesion and procedural factors on angiographic restenosis: analysis of 3370 unselected patients treated with different stent designs. Circulation 1999; 100:Suppl I:I-300.abstract.

    Google Scholar 

  46. Kastrati A, Schömig A, Dietz R, et al. Time course of restenosis during the first year after emergency coronary stenting. Circulation 1993;87:1498–505.

    PubMed  CAS  Google Scholar 

  47. Kastrati A, Schömig A, Elezi S, et al. Interlesion dependence of the risk for restenosis in patients with coronary stent placement in multiple lesions. Circulation 1998;97:2396–401.

    PubMed  CAS  Google Scholar 

  48. Kastrati A, Schömig A, Seyfarth M, et al. PIA polymorphism of platelet glycoprotein IIIa and risk of restenosis after coronary stent placement. Circulation 1999;99:1005–10.

    PubMed  CAS  Google Scholar 

  49. Kim DK, Kim JW, Kim S, et al. Polymorphism of angiotensin converting enzyme gene is associated with circulating levels of plasminogen activator inhibitor-1. Arterioscler Thromb Vasc Biol 1997;17:3242–7.

    PubMed  CAS  Google Scholar 

  50. Kimura T, Yokoi H, Nakagawa Y, et al. Three-year follow-up after implantation of metallic coronary-artery stents. N Engl J Med 1996;334:561–6.

    Article  PubMed  CAS  Google Scholar 

  51. King SB III. The development of interventional cardiology. J Am Coll Cardiol 1998;31:Suppl B:64B-88B.

    Article  PubMed  Google Scholar 

  52. King SB III, Williams DO, Chougule P, et al. Endovascular beta-radiation to reduce restenosis after coronary balloon angioplasty: results of the beta energy restenosis trial (BERT). Circulation 1998; 97:2025–30.

    PubMed  Google Scholar 

  53. Koch W, Kastrati A, Mehilli J, et al. Insertion/deletion polymorphism of the angiotensin I-converting enzyme gene and 1-year angiographic and clinical outcome after coronary stent placement. Eur Heart J 1999;20:Suppl:602.

    Google Scholar 

  54. Koch WJ, Hawes BE, Allen LF, et al. Direct evidence that Gi-coupled receptor stimulation of mitogen- activated protein kinase is mediated by G beta gamma activation of p21ras. Proc Natl Acad Sci USA 1994;91:12706–10.

    Article  PubMed  CAS  Google Scholar 

  55. Kunicki TJ, Newman PJ. The molecular immunology of human platelet proteins. Blood 1992;80:1386–404.

    PubMed  CAS  Google Scholar 

  56. Kuntz RE, Saflan RD, Levine MJ, et al. Novel approach to the analysis of restenosis after the use of three new coronary devices. J Am Coll Cardiol 1992; 19:1493–9.

    Article  PubMed  CAS  Google Scholar 

  57. Le Breton H, Plow EF, Topol EJ. Role of platelets in restenosis after percutaneous coronary revascularization. J Am Coll Cardiol 1996; 28:1643–51.

    Article  PubMed  Google Scholar 

  58. Leatham E, Barley J, Redwood S, et al. Angiotensin-1 converting enzyme (ACE) polymorphism in patients presenting with myocardial infarction or unstable angina. J Hum Hypertens 1994;8:635–8.

    PubMed  CAS  Google Scholar 

  59. Lee HS, Hutchinson IV, Pravica V, et al. Association between transforming growth factor b polymorphism and coronary in-stent restenosis. Eur Heart J 1999;20:Suppl:602.

    Google Scholar 

  60. Lehmann KG, Melkert R, Serruys PW. Contributions of frequency distribution analysis to the understanding of coronary restenosis. A reappraisal of the gaussian curve. Circulation 1996;93:1123–32.

    PubMed  CAS  Google Scholar 

  61. Lindpaintner K. Genetics of interventional cardiology. Old principles, new frontiers. Circulation 1997;96:12–4.

    PubMed  CAS  Google Scholar 

  62. Lindpaintner K, Pfeffer MA, Kreutz R, et al. A prospective evaluation of an angiotensin-converting-enzyme gene polymorphism and the risk of ischemic heart disease. N Engl J Med 1995;332:706–11.

    Article  PubMed  CAS  Google Scholar 

  63. Ludwig E, Corneli PS, Anderson JL, et al. Angiotensin-converting enzyme gene polymorphism is associated with myocardial infarction but not with development of coronary stenosis. Circulation 1995;91:2120–4.

    PubMed  CAS  Google Scholar 

  64. Lyman S, Aster RH, Visentin GP, et al. Polymorphism of human platelet membrane glycoprotein IIb associated with the Baka/Bakb alloantigen system. Blood 1990;75:2343–8.

    PubMed  CAS  Google Scholar 

  65. Mamotte CDS, van Bockxmeer FM, Taylor RR. Pla1/a2 polymorphism of glycoprotein IIIa and risk of coronary artery disease and restenosis following coronary angioplasty. Am J Cardiol 1998;82:13–6.

    Article  PubMed  CAS  Google Scholar 

  66. Margaglione M, Grandone E, Vecchione G, et al. Plasminogen activator inhibitor-1 (PAI-1) antigen plasma levels in subjects attending a metabolic ward: relation to polymorphisms of PAI-1 and angiontensin converting enzyme (ACE) genes. Arterioscler Thromb Vasc Biol 1997;17:2082–7.

    PubMed  CAS  Google Scholar 

  67. Matsuno H, Stassen JM, Vermylen J, et al. Inhibition of integrin function by a cyclic RGD-containing peptide prevents neointima formation. Circulation 1994;90:2203–6.

    PubMed  CAS  Google Scholar 

  68. Mintz GS, Popma JJ, Hong MK, et al. Intravascular ultrasound to discern device-specific efects and mechanisms of restenosis. Am J Cardiol 1996;78:Suppl 3A:18–22.

    Article  PubMed  CAS  Google Scholar 

  69. Murad F. What are the molecular mechanisms for the antiproliferative effects of nitric oxide and cGMP in vascular smooth muscle? Circulation 1997;95:1101–3.

    PubMed  CAS  Google Scholar 

  70. Naber C, Baumgart D, Heusch G, et al. Genetic determination of the response to a2-adrenergic stimulation in human coronary arteries. Naunyn Schmiedebergs Arch Pharmacol 1998;358:R647.abstract.

    Google Scholar 

  71. Nakai K, Itoh C, Miura Y, et al. Deletion polymorphism of the angiotensin I-converting enzyme gene is associated with serum ACE concentration and increased risk for CAD in the Japanese. Circulation 1994;90:2199–202.

    PubMed  CAS  Google Scholar 

  72. Nakauchi Y, Suehiro T, Yamamoto M, et al. Significance of angiotensin I-converting enzyme and angiotensin II type 1 receptor gene polymorphisms as risk factors for coronary heart disease. Atherosclerosis 1996;125:161–9.

    Article  PubMed  CAS  Google Scholar 

  73. Nikol S, Isner JM, Pickering JG, et al. Expression of transforming growth factor-beta 1 is increased in human vascular restenosis lesions. J Clin Invest 1992;90:1582–92.

    Article  PubMed  CAS  Google Scholar 

  74. Nobuyoshi M, Kimura T, Nosaka H, et al. Restenosis after successful percutaneous transluminal coronary angioplasty: serial angiographic follow-up of 229 patients. J Am Coll Cardiol 1988;12:616–23.

    PubMed  CAS  Google Scholar 

  75. Nurden AT. Polymorphisms of human platelet membrane glycoproteins: structure and clinical significance. Thromb Haemost 1995;74:345–51.

    PubMed  CAS  Google Scholar 

  76. Nürnberg B, Gudermann T, Schultz G. Receptors and G proteins as primary components of transmembrane signal transduction. J Mol Med 1995;73:123–32.

    Article  PubMed  Google Scholar 

  77. Ohishi M, Fujii K, Minamino T, et al. A potent genetic risk factor for restenosis [letter]. Nat Genet 1993;5:324–5.

    Article  PubMed  CAS  Google Scholar 

  78. Ohishi M, Ueda M, Rakugi H, et al. Upregulation of angiotensin-converting enzyme during the healing process after injury at the site of percutaneous transluminal coronary angioplasty in humans. Circulation 1997;96:3328–37.

    PubMed  CAS  Google Scholar 

  79. Oike Y, Hata A, Ogata Y, et al. Angiotensin converting enzyme as a genetic risk factor for coronary artery spasm. Implication in the pathogenesis of myocardial infarction. J Clin Invest 1995;96: 2975–9.

    Article  PubMed  CAS  Google Scholar 

  80. Rankin JM, Penn IM. Coronary stenting: a global perspective. ACC Curr J Rev Nov/Dec:22-5, 1998.

  81. Rensing BJ, Hermans WRM, Deckers JW, et al. Lumen narrowing after percutaneous transluminal coronary balloon angioplasty follows a near gaussian distribution: A quantitative angiographic study in 1,445 successfully dilated lesions. J Am Coll Cardiol 1992;19:939–45.

    Article  PubMed  CAS  Google Scholar 

  82. Ribichini F, Steffenino G, Dellavalle A, et al. Plasma activity and insertion/deletion polymorphism of angiotensin I- converting enzyme: a major risk factor and a marker of risk for coronary stent restenosis. Circulation 1998;97:147–54.

    PubMed  CAS  Google Scholar 

  83. Ridker PM, Hennekens CH, Scmitz C, et al. PlA1/A2 polymorphism of platelet glycoprotein IIIa and risks of myocardial infarction, stroke, and venous thrombosis. Lancet 1997;349:385–8.

    Article  PubMed  CAS  Google Scholar 

  84. Rigat B, Hubert C, Alhenc-Gelas F, et al. An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accouting for half the variance of serum enzyme levels. J Clin Invest 1990;86:1343–6.

    Article  PubMed  CAS  Google Scholar 

  85. Rosenthal N, Schwartz RS. In search of perverse polymorphisms. N Engl J Med 1998;338:122–4.

    Article  PubMed  CAS  Google Scholar 

  86. Ruiz J, Blanche H, Cohen N, et al. Insertion/deletion polymorphism of the angiotensin-converting enzyme gene is strongly associated with coronary heart disease in non-insulin- dependent diabetes mellitus. Proc Natl Acad Sci USA 1994;91:3662–5.

    Article  PubMed  CAS  Google Scholar 

  87. Samani NJ, Modwick D. Glycoprotein IIIa polymorphism and risk of myocardial infarction. Cardiovasc Res 1997;33:693–7.

    Article  PubMed  CAS  Google Scholar 

  88. Samani NJ, Martin DS, Brack M, et al. Insertion/deletion polymorphism in the angiotensin-converting enzyme gene and risk of restenosis after coronary angioplasty. Lancet 1995;345:1013–6.

    Article  PubMed  CAS  Google Scholar 

  89. Samani NJ, Martin DS, Brack M, et al. Apolipoprotein E polymorphism does not predict risk of restenosis after coronary angioplasty. Atherosclerosis 1996;125:209–16.

    Article  PubMed  CAS  Google Scholar 

  90. Samani NJ, Thompson JR, O'Toole L, et al. A meta-analysis of the association of the delection allele of the angiotensin-converting enzyme gene with myocardial infarction. Circulation 1996;94:708–12.

    PubMed  CAS  Google Scholar 

  91. Sase K, Michel T. Expression of constitutive endothelial nitric oxide synthase in human blood platelets. Life Sci 1995;57:2049–55.

    Article  PubMed  CAS  Google Scholar 

  92. Savage MP, Douglas JS Jr, Fischman DL, et al. Stent placement compared with balloon angioplasty for obstructed coronary by-pass grafts. N Engl J Med 1997;337:740–7.

    Article  PubMed  CAS  Google Scholar 

  93. Schömig A, Kastrati A, Elezi S, et al. Bimodal distribution of angiographic measures of restenosis six months after coronary stent placement. Circulation 1997;96:3880–7.

    PubMed  Google Scholar 

  94. Schömig A, Neumann FJ, Kastrati A, et al. A randomized comparison of antiplatelet and anticoagulant therapy after the placement of coronary artery stents. N Engl J Med 1996;334:1084–9.

    Article  PubMed  Google Scholar 

  95. Schwartz RS: Pathophysiology of restenosis: interaction of thrombosis, hyperplasia, and/or remodeling. Am J Cardiol 1998; 81:14E-7E.

    Article  PubMed  CAS  Google Scholar 

  96. Schwartz RS, Topol EJ, Serruys PW, et al. Artery size, neointima, and remodeling: time for some standards. J Am Coll Cardiol 1998;32:2087–94.

    Article  PubMed  CAS  Google Scholar 

  97. Serruys PW, de Jaegere P, Kiemeneij F, et al. A comparison of balloon-expandable-stent implantation with balloon angioplasty in patients with coronary artery disease. N Engl J Med 1994;331:489–95.

    Article  PubMed  CAS  Google Scholar 

  98. Serruys PW, Luijten HE, Beatt KJ, et al. Incidence of restenosis after successful coronary angioplasty: a time-related phenomenon. A quantitative angiographic study in 342 consecutive patients at 1, 2, 3, and 4 months. Circulation 1988;77:361–71.

    PubMed  CAS  Google Scholar 

  99. Siffert W, Rosskopf D, Siffert G, et al. Association of a human G-protein b3 subunit variant with hypertension. Nat Genet 1998;18:45–8.

    Article  PubMed  CAS  Google Scholar 

  100. Sirnes PA, Golf S, Myreng Y, et al. Stenting in Chronic Coronary Occlusion (SICCO): a randomized, controlled trial of adding stent implantation after successful angioplasty. J Am Coll Cardiol 1996;28:1444–51.

    Article  PubMed  CAS  Google Scholar 

  101. Someya N, Morotomi Y, Kodama K, et al. Suppressive effect of captopril on platelet aggregation in essential hypertension. J Cardiovasc Pharmacol 1984;6:840–3.

    Article  PubMed  CAS  Google Scholar 

  102. Teirstein PS, Massullo V, Jani S, et al. Catheter-based radiotherapy to inhibit restenosis after coronary stenting. N Engl J Med 1997;336:1697–703.

    Article  PubMed  CAS  Google Scholar 

  103. The PURSUIT Trial Investigators. Inhibition of platelet glycoprotein IIb/IIIa with eptifibatide in patients with acute coronary syndromes. N Engl J Med 1998;339:436–43.

    Article  Google Scholar 

  104. Tiret L, Bonnardeaux A, Poirier O, et al. Synergistic effects of angiotensin-converting enzyme and angiotensin-II type 1 receptor gene polymorphisms on risk of myocardial infarction. Lancet 1994;344:910–3.

    Article  PubMed  CAS  Google Scholar 

  105. Tiret L, Kee F, Poirier O, et al. Deletion polymorphism in angiotensin-converting enzyme gene associated with parental history of myocardial infarction. Lancet 1993;341:991–2.

    Article  PubMed  CAS  Google Scholar 

  106. Tiret L, Rigat B, Visvikis S, et al. Evidence, from combined segregation and linkage analysis, that a variant of the angiotensin I-converting enzyme (ACE) gene controls plasma ACE levels. Am J Hum Genet 1992;51:197–205.

    PubMed  CAS  Google Scholar 

  107. Topol EJ. Coronary-artery stents-gauging, gorging, and gouging. N Engl J Med 1998;339:1702–4.

    Article  PubMed  CAS  Google Scholar 

  108. Topol EJ, Califf RM, Weisman HF, et al. Randomised trial of coronary intervention with antibody against platelet IIb/IIIa integrin for reduction of clinical restenosis: Results at six months. The EPIC investigators. Lancet 1994;343:881–6.

    Article  PubMed  CAS  Google Scholar 

  109. Topol EJ, Ferguson JJ, Weisman HF, et al. Long-term protection from myocardial ischemic events in a randomized trial of breif integrin b blockade with percutaneous coronary intervention. JAMA 1997;278:479–84.

    Article  PubMed  CAS  Google Scholar 

  110. Topol EJ, Serruys PW. Frontiers in interventional cardiology. Circulation 1998;98:1802–20.

    PubMed  CAS  Google Scholar 

  111. van Bockxmeer FM, Mamotte CD. Apolipoprotein epsilon 4 homozygosity in young men with coronary heart disease. Lancet 1992;340:879–80.

    Article  PubMed  Google Scholar 

  112. van Bockxmeer FM, Mamotte CD, Gibbons FA, et al. Angiotensinconverting enzyme and apolipoprotein E genotypes and restenosis after coronary angioplasty. Circulation 1995;92:2066–71.

    PubMed  Google Scholar 

  113. van Bockxmeer FM, Mamotte CD, Gibbons FA, et al. Apolipoprotein epsilon 4 homozygosity — a determinant of restenosis after coronary angioplasty. Atherosclerosis 1994;110:195–202.

    Article  PubMed  Google Scholar 

  114. Vaughan DE, Lazos SA, Tong K. Angiotensin II regulates the expression of plasminogen activator inhibitor-1 in cultured endothelial cells. A potential link between the renin-angiotensin system and thrombosis. J Clin Invest 1995;95:995–1001.

    Article  PubMed  CAS  Google Scholar 

  115. Versaci F, Gaspardone A, Tomal F, et al. A comparison of coronary-artery stenting with angioplasty for isolated stenosis of the proximal left anterior descending coronary artery. N Engl J Med 1997; 336:817–22.

    Article  PubMed  CAS  Google Scholar 

  116. Villard E, Tiret L, Visvikis S, et al. Identification of new polymorphisms of the angiotensin I-converting enzyme (ACE) gene, and study of their relationship to plasma ACE levels by two-QTL segregation-linkage analysis. Am J Hum Genet 1996;58:1268–78.

    PubMed  CAS  Google Scholar 

  117. Virchow S, Ansorge N, Rubben H, et al. Enhanced fMLP-stimulated chemotaxis in human neutrophils from individuals carrying the G protein beta3 subunit 825 T-allele. FEBS Lett 1998;436: 155–8.

    Article  PubMed  CAS  Google Scholar 

  118. von Beckerath N, Kastrati A, Koch W, et al. G protein b3 subunit polymorphism and risk of thrombosis and restenosis following coronary stent placement. Atherosclerosis (in press).

  119. Waksman R. Late thrombosis after radiation: Sitting on a time bomb. Circulation 1999;100:780–2.

    PubMed  CAS  Google Scholar 

  120. Walter DH, Schächinger V, Elsner M, et al. Platelet glycoprotein IIIa polymorphisms and risk of coronary stent thrombosis. Lancet 1997;350:1217–9.

    Article  PubMed  CAS  Google Scholar 

  121. Walter DH, Schächinger V, Elsner M, et al. Statin therapy substantially reduces restenosis after coronary stent implantation in patients with the PIA2 glycoprotein IIb/IIIa receptor polymorphism. Eur Heart J 1999;20:Suppl:511.

    Google Scholar 

  122. Weiss EJ, Bray PF, Tayback M, et al. A polymorphism of a platelet glycoprotein receptor as an inherited risk factor for coronary thrombosis. N Engl J Med 1996;334:1090–4.

    Article  PubMed  CAS  Google Scholar 

  123. Willerson JT. Stent restenosis. Can effective antithrombotic therapy be protective? Circulation 1997;96:383–5.

    PubMed  CAS  Google Scholar 

  124. Winkelmann BR, Nauck M, Klein B, et al. Deletion polymorphism of the angiotensin I-converting enzyme gene is associated with increased plasma angiotensin-converting enzyme activity but not with increased risk for myocardial infarction and coronary artery disease. Ann Intern Med 1996;125:19–25.

    PubMed  CAS  Google Scholar 

  125. Zannad F, Visvikis S, Gueguen R, et al. Genetics strongly determines the wall thickness of the left and right carotid arteries. Hum Genet 1998;103:183–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adnan Kastrati MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kastrati, A., Dirschinger, J. & Schömig, A. Genetic risk factors and restenosis after percutaneous coronary interventions. Herz 25, 34–46 (2000). https://doi.org/10.1007/BF03044122

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03044122

Key Words

Schlüsselwörter

Navigation