Skip to main content
Log in

Brachytherapy with iridium-192 HDR to prevent from restenosis in peripheral arteries

Sieben Jahre Nachbeobachtung der Brachytherapie mit Iridium 192 zur Verhütung von Restenosen in peripheren Arterien-Eine Aktualisierung

An update

  • Published:
Herz Aims and scope Submit manuscript

Abstract

The use of stents does not appreciably improve restenosis (usually resulting from intimal hyperplasia) as compared to percutaneous transluminal angioplasty (PTA) alone. The development of small-caliber probes for afterloading therapy in the biliary tract allowed us to use these for therapy in the vascular system. Using a special 9 F catheter, exact measurement of the length of the stented vascular segment and of the insertion length of the afterloading probe could be reproducibly performed. We used a Nucletron (Micro) Selectron HDR planning system version 10.10 for exact calculation, monitoring, and control of the afterloading procedure. Our source was iridium 192 (10 Ci) with a diameter of 1.1 mm. The program controls and monitors the insertion and removal of the iridium probe from the source into the special catheter through to the tip, and monitors the irradiation duration. The exposure time was around 200 seconds for a surface dose of 12 Gy.

To date, a total of 40 patients have been treated with endovascular afterloading. All patients suffered from clinically relevant reocclusions or restenoses in stented vascular segments of the superficial femoral artery following successful PTA or laser treatment, within 6 to 8 months after the last therapy. In all patients it was possible to perform re-PTA treatment without remaining residual stenoses in the stented region. The additional time required as compared to PTA alone was approximately 45 minutes with most of this time spending for transportation between the cath lab and afterloading room.

The follow-up period of the 40 patients ranged from 4 months to 7 1/2 years. In 33 patients, there was no deterioration of the clinical stage and no restenosis. One patient suffered from an acute thrombosis approximately 3 months after stent implantation, another patient had a stenosis 3 cm above the stented vascular segment 12 months after irradiation treatment. Follow-up examinations have revealed no evidence of nerve lesions following irradiation therapy. The tissue, surrounding the artery showed no change following irradiation therapy, either in the CT, color-coded Doppler, endovascular ultrasonic scan or MRI. No complaints of discomfort were reported during or after irradiation. With the exceptions mentioned above, there was no evidence of any complications.

Zusammenfassung

Der Gebrauch von Stents hat nicht wesentlich die Problematik der Restenose (meist Intimahy-perplasie) im Vergleich zur alleinigen perkutanen transluminalen Angioplastie (PTA) gelöst. Die Entwicklung dünner Drähte zur Afterloading-Therapie im Gallengang hat uns Gelegenheit gegeben, diese auch zur endovaskulären Bestrahlung zu nutzen. Mit Hilfe eines speziellen 9-F-Katheters können exakte Messungen der Länge des gestenteten Gefäßsegments und der Einführlänge des Afterloading-Drahtes reproduzierbar durchgeführt werden. Wir verwendeten ein Nucletron-(Micro-)Selectron-HDR-Gerät zur Therapieplanung (Version 10.10), exakten Berechnung, Monitoring und zur Kontrolle des Afterloadings. Die von uns verwendete Strahlenquelle war Iridium 192 (10 Ci) mit einem Durchmesser von 1,1 mm. Das Programm kontrolliert und überwacht das Einführen und Zurückbringen des Iridium-drahtes und auch die Bestrahlungszeit. Diese beträgt etwa 200 Sekunden für eine Oberflächendosis von 12 Gy.

Bis heute haben wir insgesamt 40 Patienten mit endovaskulärem Afterloading behandelt. Alle Patienten litten an klinisch relevanter Restenose bzw. Reverschluß in den gestenteten Gefäßsegmenten der Arteria femoralis superficialis nach primär erfolgreicher PTCA bzw. Laserbehandlung. Die Bestrahlung fand sechs bis acht Monate nach der letzten Intervention statt. Bei einem Patienten konnten wir eine erfolgreiche Re-PTA ohne Residualstenose im Stentbereich durchführen. Die zusätzliche Zeit, die für die Nachbestrahlung erforderlich ist, beträgt etwa 45 Minuten, der größe Teil wird für den Transport vom Katheterlabor in die Strahlentherapieabteilung benötigt.

Die Nachbeobachtungszeit dieser 40 Patienten liegt zwischen vier Monaten und siebeneinhalb Jahren. Bei 33 Patienten trat keine Verschlechterung des klinischen Stadiums bzw. keine Restenose ein. Ein Patient erlitt drei Monate nach der Bestrahlung eine akute Stentthrombose, ein anderer entwickelte eine neue Stenose 3 cm proximal des gestenteten Segments zwölf Monate nach der Bestrahlungstherapie. Die Nachbeobachtungsuntersuchungen gaben bei keinem Patienten Hinweise auf Nervenschädigungen. Das die Arterie umgebende Gewede zeigte weder im CT, farbkodierten Doppler, intravasalen Ultraschall noch in der Kernspintomographie Zeichen einer Gewebsschädigung. Während oder nach der Bestrahlung traten keine Beschwerden auf. Mit Ausnahme der oben genannten Patienten, gab es im Rahmen der Langzeitbeobachtung keine Komplikationen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amronin GG, Gildenhorn HC, Solomon RD, et al. The synergism of X irradiation and cholesterol fat feeding on the development of coronary artery lesions. J Atheroscler Res 1964;4:325–34.

    Article  Google Scholar 

  2. Artom C, Lofland HB, Clarkson TB. Ionizing radiation, atherosclerosis, and lipid metabolism in pigeons. Radiat Res 1965;26:165–77.

    Article  PubMed  CAS  Google Scholar 

  3. Baensch W. Über die Strahlenbehandlung der Keloide. Strahlentherapie 1937;60:204–9.

    Google Scholar 

  4. Battegay FJ, Raines EW, Seifert RA, et al. TGF-B induces bimodal proliferation of connective tissue cells via complex control of an autocrine PDGF loop. Cell 1990;63:515–24.

    Article  PubMed  CAS  Google Scholar 

  5. Betz E, Hämmerle H, Strohschneider T. Inhibition of smooth muscle cell proliferation and endothelial permeability with fluranizine in vitro and in experimental atheromas. Res Exp Med 1985;325–40.

  6. Betz E, Hämmerle H, Strohschneider T. Vergleich von Wirkungen einzelner Pharmaka auf die Proliferation von Gefäßmuskelzellen in vivo und in vitro. In: Fischer H, Betz E eds. Gefäßwand-elemente in vivo und in vitro. Stuttgart: Wissenschaftliche Verlagsgesellschaft, 1984;43–57.

    Google Scholar 

  7. Brambs HJ, Freund U, Bruggmoser G, et al. Kombinierte intraduktate perkutane Radiotherapie bei malignen Gallengangsobstruktionen mit anschließender prothetischer Versorgung. Onkologie 1987;10:84–9.

    Article  PubMed  CAS  Google Scholar 

  8. Castellot Jr JJ, Addonizio ML, Rosenberg R, et al. Cultured endothelial cells produce a heparin like inhibitor of smooth muscle cell growth. J Cell Biol 1990;110:373–9.

    Google Scholar 

  9. Clowes AW, Karnovsky MJ. Suppression by heparin of smooth muscle cell proliferation in injured arteries. Nature 1977;265:625–6.

    Article  PubMed  CAS  Google Scholar 

  10. Clowes AW, Reidy MA, Clowes MM. Kinetics of cellular proliferation after arterial injury. Lab Invest 1983;49:327–34.

    PubMed  CAS  Google Scholar 

  11. Courrier JW, Power TK, Haudenschild CC, et al. Low molecular weight heparin (enoaparin) reduces restenosis after iliac angioplasty in the hypercholesterolemic rabbit. J Am Coll Cardiol 1991;17:118–25.

    Google Scholar 

  12. Cox JL, Gottlieb AL. Restenosis following percutaneous transluminal angioplasty: clinical, physiological and pathological features. Can Med Assoc J 1986;136:1129–32.

    Google Scholar 

  13. Craig RDP, Pearson D. Early post-operative irradiation in the treatment of keloid scars. Br J Plast Surg 1965;18:369–75.

    Article  PubMed  CAS  Google Scholar 

  14. Crocett DJ. Regional keloid susceptibility. Br J Plast Surg 1964;17:245–53.

    Article  Google Scholar 

  15. Cwikiel W, Stridbeck H, Stenram U. Electrolytic stents to inhibit tumor growth: An experimental study in vitro and in rats. Acta Radiol 1993;34:1–5.

    Google Scholar 

  16. Dalicho W. Zur Therapie der Keloide mit besonderer Berück-sichtigung der Radiumbestrahlung. Stahlentherapie 1949;78.

  17. Dartsch PC, Betz E, Ischinger T. Wirkung von Dihämatoporphyrin-Derivaten auf kultivierte glatte Muskelzellen des Menschen aus normalen und atherosklerotisch veränderten Gefäßsegmenten. Übersicht über bisherige Ergebnisse und Implikationen für eine photodynamische Therapie. Z Kardiol 1991;80:6–14.

    PubMed  CAS  Google Scholar 

  18. Dichek DA, Neville RF, Zwiebel JA, et al. Seeding of intravascular stents with genetically engineered endothelial cells. Circulation 1989;80:1347–53.

    PubMed  CAS  Google Scholar 

  19. Drescher W, Basche S, Schumann E. Arterielle Spätkomplikationen nach Strahlentherapie. Strahlentherapie 1984;160:505–7.

    PubMed  CAS  Google Scholar 

  20. Ellis SG, Roubin GS, Wilentz J. Results of a randomized trial of heparin and aspirin vs aspirin alone for prevention of acute closure and restenosis after angioplasty (PTCA). Circulation 1987;76:213.

    Google Scholar 

  21. Enhamre A, Hammar H. Treatment of keloids with excision and postoperative x-ray irradiation. Dermatologica 1983;167:90–3.

    Article  PubMed  CAS  Google Scholar 

  22. Essed CE, Van Den Brand M, Becker AE. Transluminal coronary angioplasty and early restenosis: fibrocellular occlusion after wall laceration. Br Heart J 1983;49:393–6.

    Article  PubMed  CAS  Google Scholar 

  23. Faxon DP, Sanborn TA, Haudenschild CC. Mechanism of angioplasty and its relation to restenosis. Am J Cardiol 1987;60:5B-9B.

    Article  PubMed  CAS  Google Scholar 

  24. Faxon DP, Sanborn TA, Weber VJ. Restenosis following transluminal angioplasty in experimental atherosclerosis. Arteriosclerosis 1984;4:189–95.

    PubMed  CAS  Google Scholar 

  25. Fischer JJ. Proliferation of rat aortic endothelial cells following X irradiation. Radiat Res 1982;92:405–10.

    Article  PubMed  CAS  Google Scholar 

  26. Friedman JR, Burns R. Role of platelets in the proliferative response of the injured artery. Prog Hemost Thromb 1978;4:249–78.

    PubMed  CAS  Google Scholar 

  27. Garth EA, Ratliff NB, Hollman J, et al. Intimal proliferation of smooth muscle cells as an explanation for recurrent coronary artery stenosis after percutaneous transluminal coronary angioplasty. J Am Coll Cardiol 1985;6:369–72.

    Google Scholar 

  28. Graul EH. Zur Klinik des Keloids. Strahlentherapie 1955;98:119–32.

    PubMed  CAS  Google Scholar 

  29. Guyton J, Rosenburg R, Clowes A, et al. Inhibition of rat arterial smooth muscle cell proliferation by heparin: in vivo studies with anticoagulant and non anticoagulant heparin. Circ Res 1980;46:625–34.

    PubMed  CAS  Google Scholar 

  30. Hagen B. Emflüsse der medikamentösen Nachbehandlung auf die mittelfristigen Ergebnisse von Stent-Implantationen der A. femoropolitea. J Cardiol Vasc Intervent Radiol 1994;17.2:65.

    Google Scholar 

  31. Hashizume M, Yang Y, Galt S. Intimal response of saphenous vein to intraluminal trauma by simulated angioscopic insertion. J Vasc Surg 1987;5:862–8.

    Article  PubMed  CAS  Google Scholar 

  32. Heras M, Chesebro JH, Penny WJ, et al. Effects of thrombin inhibition on the development of acute platelet thrombus deposition during angioplasty in pigs. Heparin versus recombinant hirudin, a specific thrombin inhibitor. Circulation 1989;79:657–65.

    PubMed  CAS  Google Scholar 

  33. Hirst DG, Denekamp J, Hobson B. Proliferation studies of the endothelial and smooth muscle cells of the mouse mesentery after irradiation. Cell Tissue Kinet 1980;193:91–104.

    Google Scholar 

  34. Hoepp LM, Elbadawi M, Cohn M, et al. Steroids and immuno-suppression effect on anastomotic intimal hyperplasia femoral arterial dacron bypass grafts. Arch Surg 1979;114:273–6.

    PubMed  CAS  Google Scholar 

  35. Hoover R, Rosenburg R, Hearing W, et al. Inhibition of rat arterial smooth cell proliferation by heparin: II in vitro studies. Circ Res 1980;47:578–83.

    PubMed  CAS  Google Scholar 

  36. Imparato AM, Bracco A, Kim GE, et al. Intimal and neointimal fibrous proliferation causing failure of arterial reconstructions. Surgery 1972;172:1007–17.

    Google Scholar 

  37. Ip JH, Fuster V, Badimon I, et al. Syndromes of acceleration atherosclerosis: role of vascular injury and smooth muscle cell proliferation. J Am Coll Cardiol 1990;15:1667–87.

    Article  PubMed  CAS  Google Scholar 

  38. Johnson AG. Large artery damage after X-radiation. Br J Radiol 1969;42:937–8.

    Article  PubMed  CAS  Google Scholar 

  39. Kinsella TJ, Sindelar WF, De Luca AM. Threshold dose for peripheral nerve injury following intraoperative radiotherapy (IORT) in a large animal model. Int J Radial Oncol Biol Phys 1988;23:205.

    Google Scholar 

  40. Kirkpatrick JB. Pathogenesis of foam cell lesions in irradiated arteries. Am J Pathol 1967;50:291–309.

    PubMed  CAS  Google Scholar 

  41. Kolar J. Strahlenfolgen am Herz und großen Gefäßen. Med Klin 1971;66:661–8.

    PubMed  CAS  Google Scholar 

  42. Kovalic JJ, Perez CA. Radiation therapy following keloidektomie: a 20 year experience. Radiation oncology. Biol Phys 1989;17:77–80.

    CAS  Google Scholar 

  43. Kramsch DM, Aspen AJ, Rozler LJ. Suppression of experimental atherosclerosis by the Ca++ antagonist lanthanum. J Clin Invest 1980;65:967–81.

    Article  PubMed  CAS  Google Scholar 

  44. Krüger A. Über Keloide und ihre Behandlung unter besonderer Berücksichtigung der Strahlentherapie. Strahlentherapie 1945;93:426–33.

    Google Scholar 

  45. Laerum BF, Vlodaver Z, Castaneda-Zuniga WR, et al. The mechanism of angioplasty. Fortschr. Röntgenstr 1982;136:573–6.

    Article  CAS  Google Scholar 

  46. Le Couteur RA, Gilette EL, Powers BE, et al. Peripheral neuropathies following experimental intraoperative radiation therapy (IORT). Int J Radiat Oncol Biol Phys 1989;17:583–90.

    Google Scholar 

  47. Leclerc G, Isner JM, Kearny M, et al. Evidence implicating non-muscle myosin in restenosis: use of in situ hybridization to analyze human vascular lesions obtained by directional atherectomy. Circulation 1992;85:1–11.

    Google Scholar 

  48. Leung DYM, Glagov S, Matthews MB. Cyclic stretching stimulates synthesis of matrix components by arterial smooth muscle cells in vitro. Science 1976;191:475–7.

    Article  PubMed  CAS  Google Scholar 

  49. Levy DS, Salter MM, Roth RE. Postoperative irradiation in the prevention of keloids. Am J Roentg 1981;127:509–10.

    Google Scholar 

  50. Liermann D, Böttcher HD, Kollath J, et al. Intimal hyperplasia after stent implantation in peripheral arteries: treatment by endovascular afterloading. J Cardiovasc Interv Radiol 1994;17:1: 12–6.

    Article  CAS  Google Scholar 

  51. Liermann D, Schopohl B, Hermann G, et al. Endovaskuläres Afterloading als Therapiekonzept zur Prophylaxe der intimalen Hyperplasie in peripheren Gefäßen nach Stentimplantation. In: Kollath J, Liermann D, eds. Stents II. Konstanz: Schnetztor, 1992:80–92.

    Google Scholar 

  52. Liu MW, Roubin GS, King SB. Restenosis after coronary angioplasty: potential biologic determinants and rose of intimal hyperplasia. Circulation 1989;79:1374–87.

    PubMed  CAS  Google Scholar 

  53. Liu MW, Roubin GS, Robinson KA. Trapidil in preventing restenosis after balloon-angioplasty in the atherosclerotic rabbit. Circulation 1990;81:1089–93.

    PubMed  CAS  Google Scholar 

  54. Murphy JG, Schwartz RS, Kennedy K, et al. A new biocompatible polymeric coronary stent: design and early results in the pig model. J Am Coll Cardiol 1990;1:10.

    Google Scholar 

  55. Nabel EG, Plautz G, Nabel GJ. Site specific expression in vivo by direct gene transfer into the arterial wall. Science 1990;249:1285–8.

    Article  PubMed  CAS  Google Scholar 

  56. Narayan K, Cliff WF. Morphology of irradiated microvasculature: a combined in vivo and electron microscopic study. Am J Pathol 1982;106:47–62.

    PubMed  CAS  Google Scholar 

  57. Nilsson J, Sjölund M, Palmberg L, et al. Arterial smooth muscle cells in primary culture produce a platelet-derived growth factor like protein. Cell Biol 1985;82:4418–22.

    CAS  Google Scholar 

  58. Nobuyoshi M, Kimura T, Ohishi H, et al. Restenosis after percutaneous transluminal coronary angioplasty: pathologic observations in 20 patients. J Am Coll Cardiol 1991;176:433–9.

    Google Scholar 

  59. Ollstein RN, Siegel HW, Gilloley JF, et al. Treatment of keloids by combined surgical excision and immediate postoperative x-ray therapy. Ann Plast Surg 1981;7:281–4.

    Article  PubMed  CAS  Google Scholar 

  60. Palmaz JC, Windeler SA, Garcia F. Atherosclerotic rabbit aortas: expandable intraluminal grafting. Radiology 1986;160:723–6.

    PubMed  CAS  Google Scholar 

  61. Pepine CJ, Hirschfeld JW, MacDonald RG. A controlled trial of corticosteroids to prevent restenosis after coronary angioplasty. Circulation 1990;81:1753–61.

    PubMed  CAS  Google Scholar 

  62. Powell JS, Clozel JP, Müller KM. Inhibitors angiotensin-converting enzyme prevent myointimal proliferation after vascular injury. Science 1989;245:186–8.

    Article  PubMed  CAS  Google Scholar 

  63. Reis GJ, Boucher TM, Sipperly ME. Radomized trial of fish oil for prevention of restenosis after coronary angioplasty. Lancet 1989;2:1753–61.

    Google Scholar 

  64. Roeren T, Palmaz JC, Garcia O, et al. Percutaneous vascular grafting with a coated stent. Radiology 1990;177;1:202.

    Google Scholar 

  65. Rollins N, Wright KC, Charnsangavej C, et al. Self-expanding metallic stents: preliminary evaluation in an atherosclerotic model. Radiology 1987;163:739–42.

    PubMed  CAS  Google Scholar 

  66. Rosen EM, Vinter DW, Goldberg ID. Hypertrophy of cultured bovine aortic endothelium following irradiation. Radiat Res 1989;117:395–408.

    Article  PubMed  CAS  Google Scholar 

  67. Rousseau H, Joffre F, Raillat C, et al. Self-expanding endovascular stent in experimental atherosclerosis. Radiology 1989;170:773–8.

    PubMed  CAS  Google Scholar 

  68. Scherer E, Streffer C, Trott KR, eds. Radiopathology of organs and tissues. Berlin: Springer, 1991.

    Google Scholar 

  69. Scherer E. Kontaktbestrahlung mit radioaktiven Stoffen. In: Handbuch der Medizinischen Radiologie, Bd XVI/2. Berlin-Heidelberg-New York. Springer, 1970:136–46.

    Google Scholar 

  70. Schwartz RS, Koval TM, Edwards WD, et al. Effect of external beam irradiation on neointimal hyperplasia after experimental coronary artery injury. J Am Coll Cardiol 1992;19:1106–13.

    Article  PubMed  CAS  Google Scholar 

  71. Schwartz RS, Murphy JG, Edwards WD, et al. Restenosis occurs with internal elastic lamina laceration and its proportional to severity of vessel injury in a porcine coronary artery model. Circulation 1990;82:Suppl III:656.

    Google Scholar 

  72. Sholley MM, Gimbrone MA, Coltran RS. The effect of leukocyte depletion on corneal neovascularization. Lab Invest 1978;38:32–40.

    Article  PubMed  CAS  Google Scholar 

  73. Sholley MM, Gimbrone MA, Cotran RS. Cellular migration and replication in endothelial regeneration: a study using irradiated endothelial cultures. Lab Invest 1977;36:18.

    PubMed  CAS  Google Scholar 

  74. Slepian MJ, Schindler A. Polymeric endoluminal paving/sealing: a biodegradable alternative to intracoronary stenting. Circulation 1988;78:409.

    Google Scholar 

  75. Spaet TH, Stemermann MB, Veith FJ, et al. Intimal injury and regrowth in the rabbit aorta. Medial smooth muscles cells as a source of neointima. Circ Res 1975;36:58–70.

    PubMed  CAS  Google Scholar 

  76. Strecker EP, Hagen B, Liermann D, et al. Komplikationen bei der Implantation arterieller Tantalstents und deren Behandlung. Zentralbl Radiol 1993;147:799.

    Google Scholar 

  77. Ueda M, Becker AE, Fujimoto T. Pathological changes induced by repeated percutaneous transluminal coronary angioplasty. Br Heart J 1987;58:635–43.

    Article  PubMed  CAS  Google Scholar 

  78. Wagner W, Schopohl B, Böttcher HD, et al. Ergebnisse der Narbenkeloidprophylaxe durch Kontaktbestrahlung mit Strontium 90. Röntgenpraxis 1989;42:248–52.

    PubMed  CAS  Google Scholar 

  79. Wilcox JN. Analysis of local gene expression in human atherosclerotic plaques by in situ hybridization. Trends Cardiol Med 1991;1:17–24.

    Article  CAS  Google Scholar 

  80. Zollikofer CL, Cragg AH, Hunter DW, et al. Mechanism of transluminal angioplasty. In: Castaneda-Zuniga WR, Tadavarthy SM, eds. Interventional radiology. Baltimore: Williams & Wilkins, 1992:249–98.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dieter Liermann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liermann, D., Kirchner, J., Bauernsachs, R. et al. Brachytherapy with iridium-192 HDR to prevent from restenosis in peripheral arteries. Herz 23, 394–400 (1998). https://doi.org/10.1007/BF03043605

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03043605

Key words

Schlüsselwörter

Navigation