Skip to main content
Log in

Challenges to potassium metabolism: internal distribution and external balance

  • Review Article
  • Published:
Wiener Klinische Wochenschrift Aims and scope Submit manuscript

Summary

A complex pump-leak system involving both active and passive transport mechanisms is responsible for the appropriate distribution of potassium (K) between the intra- and extracellular fluid compartments. In addition, the kidneys, and to a lesser extent the colon, safeguard maintenance of the narrow range of low K concentrations in the extracellular fluid. Early renal clearance studies showed that K is normally both reabsorbed and secreted by renal tubules, and that regulated secretion is the major source of K excretion. Net K secretion occurs mainly in principal cells while K absorption takes place in intercalated cells. Studies on single tubules and principal and intercalated cells have defined the determinants of K secretion and reabsorption including the electrochemical driving forces, specific carriers, ATPases, and K channels. Recent studies on the properties and molecular identity of renal K channels have also contributed significantly to understanding the renal mechanisms that transport and regulate K excretion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Giebisch G (2002) A trail of research on potassium. Kidney Int 62: 1498–1512

    Article  PubMed  CAS  Google Scholar 

  2. Giebisch G, Hebert SC, Wang W-H (2003) New aspects of renal potassium transport. Pflugers Arch — Eur J Physiol 446: 289–297

    CAS  Google Scholar 

  3. Giebisch G, Wang W (1996) Potassium transport: from clearance to channels and pumps. Kidney Int 49: 1624–1631

    Article  PubMed  CAS  Google Scholar 

  4. Giebisch G (1998) Renal potassium transport: Mechanisms and regulation. Am J Physiol 274: F817-F833

    PubMed  CAS  Google Scholar 

  5. Rosa RM, Epstein FH (2000) Extrarenal potassium metabolism. In: Seldin DW, Giebisch G (eds) The kidney: physiology and pathophysiology. Raven Press, New York, pp 1551–1574

    Google Scholar 

  6. Schafer J (2003) Renal regulation of potassium, calcium and magnesium. In: Johnson LR (ed) Essential medical physiology, 3rd edn. Elsevier Academic Press, San Diego, pp 437–446

    Google Scholar 

  7. Giebisch GH (1987) Cell models of potassium transport in the renal tubule. In: Giebisch G (ed) Current topics in membranes and transport, vol 28. Academic Press, Orlando, pp 133–183

    Google Scholar 

  8. Berliner RW (1961) Renal mechanisms for potassium excretion. Harvey Lect 55: 141–171

    Google Scholar 

  9. Mudge GH, Ames A, Foulks J, Gilman A (1950) Effects of drugs on renal secretion of potassium in the dog. Am J Physiol 161: 151–158

    PubMed  CAS  Google Scholar 

  10. Berliner RW, Kennedy TJ Jr (1948) Renal tubular secretion of potassium in the dog. Proc Soc Exp Biol Med 67: 542–545

    PubMed  CAS  Google Scholar 

  11. Berliner RW, Kennedy TJ, Orloff J (1954) Factors affecting the transport of potassiuim and hydrogen ions by the renal tubule. Arch Int Pharmacodyn 97: 299–312

    PubMed  CAS  Google Scholar 

  12. Berliner RW, Kennedy TJ, Orloff J (1951) Relationship between acidification of the urine and potassium metabolism. Am J Med 11: 274–282

    Article  PubMed  CAS  Google Scholar 

  13. Berliner RW, Giebisch G (2002) Remembrances of renal potassium transport. J Memb Biol 184: 225–232

    Google Scholar 

  14. Malnic G, Klose RM, Giebisch G (1964) Micropuncture study of renal potassium excretion in the rat. Am J Physiol 206: 674–686

    PubMed  CAS  Google Scholar 

  15. Malnic G, Klose RM, Giebisch G (1966) Microperfusion study of distal tubular potassium and sodium transfer in rat kidney. Am J Physiol 211: 548–559

    PubMed  CAS  Google Scholar 

  16. Grantham JJ, Burg MB, Orloff J (1970) The nature of transtubular Na and K+ transport in isolated rabbit collecting tubules. J Clin Invest 49: 1815–1826

    Article  PubMed  CAS  Google Scholar 

  17. Okusa MD, Unwin RJ, Velazquez H, et al (1992) Active potassium absorption by the renal distal tubule. am J Physiol 31: F488-F493

    Google Scholar 

  18. Weinstein AM (1988) Modeling the proximal tubule: complications of the paracellular pathway. Am J Physiol 254: F297-F305

    PubMed  CAS  Google Scholar 

  19. Giebisch G, Wang W (2000) Renal tubule potassium channels: function, regulation and structure. Acta Physiol Scand 170: 153–173

    Article  PubMed  CAS  Google Scholar 

  20. Welling PA (1995) Cross-talk and the role of K+ATP, channels in the proximal tubule. Kidney Int 48: 1017–1023

    Article  PubMed  CAS  Google Scholar 

  21. Greger R (1985) Ion transport mechanisms in thick ascending limb of Henle’s loop of mammalian nephrons. Physiol Rev 65: 760–797

    PubMed  CAS  Google Scholar 

  22. Hebert SC, Andreoli TE (1984) Control of NaCl transport in the thick ascending limb. Am J Physiol 246: F745-F756

    PubMed  CAS  Google Scholar 

  23. Hebert SC (2003) Bartter syndrome. Curr Opin Nephrol Hypertens 12: 527–532

    Article  PubMed  Google Scholar 

  24. Velazquez H, Ellison DH, Wright FS (1987) Chloride-dependent potassium secretion in early and late renal distal tubules. Am J Physiol 253: F555-F562

    PubMed  CAS  Google Scholar 

  25. Amorim JBO, Bailey MA, Musa-Aziz R, et al (2003) Role of luminal anion and pH in distal tubule potassium secretion. Am J Physiol 284: F381-F388

    CAS  Google Scholar 

  26. Muto S, Asano Y, Seldin D, Giebisch G (1999) Basolateral Na pump modulates apical Na and K+ conductances in rabbit cortical collecting ducts. Am J Physiol 276: F143-F158

    PubMed  CAS  Google Scholar 

  27. Muto S (2001) Potassium transport in the mammalian collecting duct. Physiol Rev 81: 85–116

    PubMed  CAS  Google Scholar 

  28. Gennari FJ, Segal AS (2002) Hyperkalemia: an adaptive response in chronic renal insufficiency (Perspectives in Renal Medicine). Kidney Int 62: 1–9

    Article  PubMed  CAS  Google Scholar 

  29. Koeppen B, Giebisch G (1985) Cellular electrophysiology of potassium transport in the mammalian cortical collecting tubule. Pflügers Arch 405 [Suppl]: S143-S146

    Article  PubMed  Google Scholar 

  30. Sansom SC, Agulian S, Muto S, et al (1989) K+ activity of CCD principal cells from normal and DOCA-treated rabbits. Am J Physiol 256: F136-F142

    PubMed  CAS  Google Scholar 

  31. Khuri RN, Wiederholt M, Strieder N, Giebisch G (1975) Effects of flow rate and potassium intake on distal tubular potassium transfer. Am J Physiol 228: 1249–1261

    PubMed  CAS  Google Scholar 

  32. Young DB (1988) Quantitative analysis of aldosterone’s role in potassium regulation. Am J Physiol 255: F811-F822

    PubMed  CAS  Google Scholar 

  33. Young DB, Jackson TE, Tipayamontri U, Scott RC (1984) Effects of sodium intake on steady-state potassium excretion. Am J Physiol 246: F772-F778

    PubMed  CAS  Google Scholar 

  34. Yeyati NL, Etcheverry JC, Adrogue HJ (1990) Kaliuretic response to potassium loading in amiloride-treated dogs. Renal Physiol Biochem 13: 190–199

    PubMed  CAS  Google Scholar 

  35. Oliver WJ, Cohen EL, Neel JV (1975) Blood pressure, sodium intake, and sodium related hormones in the Yanomamo Indians, a “no-salt” culture. Circulation 52: 146–151

    PubMed  CAS  Google Scholar 

  36. Silver RB, Frindt G (1993) Functional identification of H/K-ATPase in intercalated cells of cortical collecting tubule. Am J Physiol 264: F259-F266

    PubMed  CAS  Google Scholar 

  37. Doucet A, Marsy S (1987) Characterization of K+-ATPase activity in distal nephron: stimulation by potassium depletion. Am J Physiol 253: F418-F423

    PubMed  CAS  Google Scholar 

  38. Meneton P, Schultheis PF, Greeb J, et al (1998) Increased sensitivity to K+ deprivation in colonic H,K+-ATPase-deficient mice. J Clin Invest 101: 536–542

    Article  PubMed  CAS  Google Scholar 

  39. Silver RB, Mennitt PA, Satlin LM (1996) Stimulation of apical H−K+-ATPase in intercalated cells of cortical collecting duct with chronic metabolic acidosis. Am J Physiol 270: F539-F547

    PubMed  CAS  Google Scholar 

  40. Silver RB, Choc H, Frindt G (1998) Low Na−Cl diet increases H−K+-ATPase in intercalated cells from rat cortical collecting duct. Am J Physiol 275: F94-F102

    PubMed  CAS  Google Scholar 

  41. Ahlouolay M, Déchaux M, Laborde K, Bankir L (1995) Influence of glucagons on GFR and on urea and electrolyte excretion: direct and indirect effects. Am J Physiol 269: F225-F235

    Google Scholar 

  42. Field MJ, Giebisch G (1985) Hormonal control of renal potassium excretion. Kidney Int 27: 379–387

    Article  PubMed  CAS  Google Scholar 

  43. Schafer JA, Troutman SL, Schlatter E (1990) Vasopressin and mineralocorticoid increase apical membrane driving force for K+ secretion in rat CCD. Am J Physiol 258: F199-F210

    PubMed  CAS  Google Scholar 

  44. Amorim JBO, Musa-Aziz R, Mello-Aires M, Malnic G (2004) Signaling path of the action of AVP on distal K secretion. Am J Physiol (in press)

  45. Palmer LG, Antonian L, Frindt G (1994) Regulation of apical K+ and Na channels and Na/K+ pumps in rat cortical collecting tubule by dietary K+ J Gen Physiol 104: 693–710

    Article  PubMed  CAS  Google Scholar 

  46. Palmer LG (1999) Potassium secretion and the regulation of distal nephron K+ channels. Am J Physiol 277: F821-F825

    PubMed  CAS  Google Scholar 

  47. Wang WH (2004) Regulation of renal K+ transport by dietary K+ intake. Ann Rev Physiol 66: 547–569

    Article  CAS  Google Scholar 

  48. Wang W, Lerea KM, Chan M, Giebisch G (2000) Protein tyrosine kinase regulates the number of renal secretory K+ channels. Am J Physiol 278: F165-F171

    CAS  Google Scholar 

  49. Moral Z, Dong K, Wei Y, et al (2001) Regulation of ROMKI channels by protein-tyrosine kinase and tyrosine phosphatase. J Biol Chem 276: 7156–7163

    Article  PubMed  CAS  Google Scholar 

  50. Taniguchi J, Guggino WB (1989) Membrane stretch: a physiological stimulator of Ca-activated K+ channels in thick ascending limb. Am J Physiol 257: F347-F352

    PubMed  CAS  Google Scholar 

  51. Hunter M, Lopes AG, Boulpaep EL, Giebisch GH (1984) Single channel recordings of calcium-activated potassium channels in the apical membrane of rabbit cortical collecting tubules. Proc Natl Acad Sci USA 81: 4237–4239

    Article  PubMed  CAS  Google Scholar 

  52. Woda CB, Bragin A, Kleyman TR, Satlin LM (2001) Flow-dependent K secretion in the cortical collecting duct is mediated by a maxi-K channel. Am J Physiol 280: F786-F793

    CAS  Google Scholar 

  53. Taniguchi J, Imai M (1998) Flow-dependent activation of maxi-K+ channels in apical membrane of rabbit collecting tubule. J Membr Biol 164: 35–45

    Article  PubMed  CAS  Google Scholar 

  54. Frindt G, Palmer LG (1989) Low-conductance K+ channels in apical membrane of rat cortical collecting tubule. Am J Physiol 256: F143-F151

    PubMed  CAS  Google Scholar 

  55. Pacha J, Frindt G, Sackin H, Palmer L (1988) Apical maxi-K+ channels in intercalated cells of CCT. Am J Physiol 261: F696-F705

    Google Scholar 

  56. Hebert SC, Desir G, Giebisch G, Wang WH (2004) Molecular diversity and regulation of renal potassium channels. Physiol Rev (in press)

  57. Desir GV (1995) Molecular characterization of voltage and cyclic nucleotide-gated potassium channels in kidney. Kidney Int 48: 1031–1035

    Article  PubMed  CAS  Google Scholar 

  58. Orias M, Velazquez H, Tung F, et al (1997) Cloning and localization of a double-pore K+ channel, KCNK1: Exclusive expression in distal nephron segments. Am J Physiol 273: F663-F666

    PubMed  CAS  Google Scholar 

  59. Cluzeaud F, Reyes R, Escoubet B, et al (1998) Expression of TWIK-1, a novel weakly inward rectifying potassium channel in rat kidney. Am J Physiol 275: C1602-C1609

    PubMed  CAS  Google Scholar 

  60. Wang W-H, Hebert SC (2000) The molecular biology of renal K+ channels. In: Seldin DW, Giebisch GH (eds) The kidney: physiology and pathophysiology, 3rd edn. Lippincott-Raven, Philadelphia, pp 235–250

    Google Scholar 

  61. Sackin H (1995) Mechanosensitive channels. Annu Rev Physiol 57: 333–353

    PubMed  CAS  Google Scholar 

  62. Tsuchiya K, Wang W, Giebisch G, Welling PA (1992) ATP is a coupling modulator of parallel Na/K+ ATPase K+ channel activity in the renal proximal tubule. Proc Natl Acad Sci USA 89: 6418–6422

    Article  PubMed  CAS  Google Scholar 

  63. Beck JS, Mairbäurl H, Laprade G, Giebisch G (1991) Relationship between sodium transport and intracellular ATP in isolated perfused rabbit proximal convoluted tubules. Am J Physiol 261: F634-F639

    PubMed  CAS  Google Scholar 

  64. Beck JS, Hurst AM, Lapointe J-Y, Laprade R (1993) Regulation of basolateral K+ channels in proximal tubule studied during continuous microperfusion. Am J Physiol 264: F496-F501

    PubMed  CAS  Google Scholar 

  65. Ho K, Nichols CG, Lederer WJ, et al. (1993) Cloning and expression of an inwardly rectifying ATP-regulated potassium channel. Nature 362: 31–38

    Article  PubMed  CAS  Google Scholar 

  66. Hebert SC (1995) An ATP-regulated, inwardly rectifying potassium channel from rat kidney (ROMK). Kidney Int 48: 1010–1016

    Article  PubMed  CAS  Google Scholar 

  67. Desir GV (1995) Molecular characterization of voltage and cyclic nucleotide-gates potassium channels in kidney. Kidney Int 48: 1031–1035

    Article  PubMed  CAS  Google Scholar 

  68. Goldstein SA, Bockenhauer D, O’Kelli I, Zilberberg N (2001) Potassium leak channels and the KCNK family of two-P-doma in subunits. Nat Rev Neurosci 2: 175–184

    Article  PubMed  CAS  Google Scholar 

  69. Morita T, Hanaoka K, Morales MM, Montrose-Rafizadeh C, Guggino WB (1997) Cloning and characterization of maxi K+ channel alpha-subunit in rabbit kidney. Am J Physiol 273: F615-F624

    PubMed  CAS  Google Scholar 

  70. Vallon V, Grahammer F, Richter K, Bleich M, Lang F, Barhanin J, Völkl H, Warth R (2001) Role of KCNEI-dependent K+ fluxes in mouse proximal tubule. J Am Soc Nephrol 12: 2003–2011

    PubMed  CAS  Google Scholar 

  71. Lu M, Wang T, Yan Q, Yang X, et al. (2002) Absence of small-conductance K+ channel (SK) activity in apical membranes of thick ascending limb and cortical collecting duct in ROMK (Bartter’s) knock-out mice. J Biol Chem 277: 37881–37887

    Article  PubMed  CAS  Google Scholar 

  72. Wang W-H (1999) Regulation of the ROMK channel: interaction of the ROMK with associate proteins. Am J Physiol 277: F826-F831

    PubMed  CAS  Google Scholar 

  73. Stanton BA, Giebisch G (1982) Effect of pH on potassium transport by renal distal tubule. Am J Physiol 242: F544-F551

    PubMed  CAS  Google Scholar 

  74. Wang W, Giebisch G (1991) Dual effect of adenosine triphosphate on the apical small conductance K+ channel of the rat cortical collecting duct. J Gen Physiol 98: 35–61

    Article  PubMed  CAS  Google Scholar 

  75. Lu M, Hebert SC, Giebisch G (2002) Hydrolysable ATP and PIP2 modulate the small-conductance K+ channel in apical membranes of rat cortical collecting duct (CCD). J Gen Physiol 120: 603–615

    Article  PubMed  CAS  Google Scholar 

  76. MacGregor GG, Dong K, Vanoye CG, Tang L, Giebisch G, Hebert SC (2002) Nucleotides and phospholipids compete for binding to the C-terminus of KATP + channels. Proc Natl Acad Sci USA 99: 2726–2731

    Article  PubMed  CAS  Google Scholar 

  77. Huang C-L, Feng S, Hilgemann DW (1998) Direct activation of inward rectifier potassium channels by PIP2 and its stabilization by G??, Nature 391: 803–806

    Article  PubMed  CAS  Google Scholar 

  78. Zeng W-Z, Liou H-H, Krishna UM, et al. (2002) Structural determinants and specificities for ROMK1-phosphoinositide interaction. Am J Physiol 282: F826-F834

    CAS  Google Scholar 

  79. Liou H-H, Zhou SS, Huang C-L (1999) Phosphorylation of ROMK1 channel by PKA regulates channel activity via a PIP2-dependent mechanism. Proc Natl Acad Sci USA 96: 5820–5825

    Article  PubMed  CAS  Google Scholar 

  80. Leung Y-M, Zeng W-Z, Liou H-H, et al. (2000) PtdIns(4,5) P2 and intracellular pH regulate ROMK1 potassium channel via separate but interrelated mechanisms. J Biol Chem 276: 10181–10189

    Google Scholar 

  81. Sackin H, Syn S, Palmer LG, Choe H, Walters DE (2001) Regulation of ROMK by extracellular cations. Biophys J 80: 683–697

    Article  PubMed  CAS  Google Scholar 

  82. Wagner CA, Friedrich B, Lu M, et al (2004) Kv1.3 is an apical K+-channel in renal principal cells and is regulated by the aldosterone induced kinase SGK1. Pflügers Arch (submitted)

  83. Wang W-H, Geibel J, Giebisch G (1993) Mechanism of apical K+ channel modulation in principal renal tubule cells. Effect of inhibition of basolateral Na,K-ATPase. J Gen Physiol 101: 673–694

    Article  PubMed  CAS  Google Scholar 

  84. O’Neil RG, Helman SI (1977) Transport characteristics of renal collecting tubules: influences of DOCA and dict. Am J Physiol 233: F544-F558

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard Giebisch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giebisch, G. Challenges to potassium metabolism: internal distribution and external balance. Wien Klin Wochenschr 116, 353–366 (2004). https://doi.org/10.1007/BF03040914

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03040914

Key words

Navigation