Skip to main content
Log in

Theory and practice of predictive assays in radiation therapy

Theorie und Praxis prädiktiver Tests in der Strahlentherapie

  • Aktuelles Forum
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Purpose

An overview of the field of predictive assays is presented. It has been written with the many clinicians and scientists in mind who would like to become better acquainted with the general scope, principles and themes in the field.

Results

Predictive assays have yielded much valuable information about the radiobiology of tumors, e.g. the overall treatment time for rapidly proliferating tumors should be kept to a minimum. However, alteration of current treatment protocols basedon results from predictive assays is still a matter of debate. What justification do we have to change established treatment protocols? A necessary and sufficient justification would be when the test value indicated an alternative treatment producing a better outcome, i.e. higher survival, improved local control, etc. Necessary but not always sufficient justification is correlation between the parameter measured and clinical outcome, if insufficient clinical benefit can be derived even when this is know. It is not sufficient that a test be demonstrated to be discriminatory. It must discriminate a sufficient number of patients, and its use must provide the patient with useful therapeutic alternatives. These parameters measured by predictive assays may well interact radiobiologically, and restricting observations to just one assay is probably insufficient for reliable indications. In the future, it is more likely that a panel of tests will be performed, and clinical decisions based on multi-parametric analysis of biopsy material.

Conclusion

In the following overview general predictive assay theory is presented followed by a brief introduction to some of the more established assays and finally some guidelines are suggested for the development of new assays.

Zusammenfassung

Ziel

Die folgende Übersicht zum Thema “prädiktive Tests” in der Radiotherapie richtet sich an Kliniker und Naturwissenschafter, die sich mit den allgemeinen Zielsetzungen, den Verfahren und den besonderen Fragen auf diesem Gebiet vertraut machen wollen.

Ergebnisse

Prädiktive Tests haben wertvolle Erkenntnisse über die Strahlenbiologie von Tumoren ermöglicht, so zum Beispiel, daß die gesamte Behandlungszeit für schnell proliferierende Tumoren möglichst kurz gehalten werden sollte. Allerdings stößt die Abänderung gegenwärtig üblicher Behandlungsprotokolle, die sich auf Ergebnisse prädiktiver Analysen stützt, immer noch auf unterschiedliche Reaktionen. Was rechtfertig denn eine Änderung bestehender Behandlungsprotokolle? Eine notwendige und ausreichende Rechtfertigung würde dann vorliegen, wenn die Testwerte auf eine alternative Behandlung mit verbessertem Verlauf hinweisen würden, das heißt eine höhere Überlebensrate oder eine verbesserte lokale Kontrolle zu erwarten wäre. Die Änderung der bestehenden Protokolle ist nicht gerechtfertigt, wenn zwischen den gemessenen Testparametern und dem klinischen Verlauf zwar eine Korrelation besteht, aber keine klinischen Vorteile resultieren. Es genügt auch nicht, lediglich den selektiven Charakter eines Tests nachzuweisen. Er muß eine genügende Anzahl von Patienten selektionieren und eine für die Patienten nützliche therapeutische Alternative aufzeigen. Die durch prädiktive Tests ermittelten Parameter könnten sich gegenseitig beeinflussen, weshalb es für zuverlässige Indikationen wahrscheinlich nicht genügt, nur einen Test durchzuführen. Es erscheint wahrscheinlich, daß in Zukunft eine Palette von Prüfverfahren zur Verfügung stehen muß, damit die klinischen Entscheide auf Ergebnissen multi parametrischer Analysen von Biopsiematerial abgestützt werden können.

Schlußfolgerungen

Im folgenden überblick werden grundlegende Theorien, die prädiktiven Tests zugrunde liegen, vorgestellt und durch kurze Zusammenfassungen über bereits eingeführte Verfahren ergänzt. Abschließend folgen einige Vorschläge zur Entwicklung neuer Tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arlett, C. F.: Human cellular radiosensitivity—the search for the diagnostic holy grail or a poisoned chalice. Adv. Radiat. Biol. 16 (1992), 273–292.

    Google Scholar 

  2. Beck-Bornholdt, H.-P., M. Baumann (eds.): Quantitative Bestimmung des impact factors eines predictive assays. Exp. Strahlenther. klin. Strahlenbiol. (1994), 91.

  3. Begg, A. C., I. Hofland, L. Moonen, H. Bartelink, S. Schraub, P. Bontemps, R. Le Fur, W. van den Bogaert, R. Caspers, M. van Glabbeke, J. C. Horiot: The predictive value of cell kinetic measurements in a European trial of accelerated fractionation in advanced head and neck tumors: an interim report. Int. J Radiat. Oncol. Biol. Phys. 19 (1990), 1449–1453.

    PubMed  CAS  Google Scholar 

  4. Begg, A. C., N. J. McNally, D. C. Shrieve: A method to measure the duration of DNA synthesis and the potential doubling time from a single sample. Cytometry 6 (1985), 620–626.

    Article  PubMed  CAS  Google Scholar 

  5. Begg, A. C., N. S. Russell, H. Knaken, J. V. Lebesque: Lack of correlation of human fibroblast radiosensitivity in vitro with early skin reactions in patients undergoing radiotherapy. Int. J. Radiat. Biol 64 (1993), 393–405.

    Article  PubMed  CAS  Google Scholar 

  6. Brock, W. A., B. W. Brown, H. Goepfert, L. J. Peters: In vitro radiosensitivity of tumor cells and local tumor control by radiotherapy. In: Dewey, W. C., M. Edington, R. J. M. Fry, E. J. Hall, G. F. Whitmore (eds.). Radiation research: a twentieth-century perspective. Academic Press, Inc. San Diego, 1992, p. 696–699.

    Google Scholar 

  7. Coco-Martin, J. M., M. F. M. A. Smeets, M. Poggensee, E. Mooren, I. Hofland, M. Van den Brug, C. Ottenheim, H. Bartelink, A. C. Begg: Use of fluorescence in situ hybridization to measure chromosome aberrations as a predictor of radiosensitivity in human tumour cells. Int. J. Radiat. Biol. 66 (1994), 297–307.

    Article  PubMed  CAS  Google Scholar 

  8. Cox, D. R.: Regression models and life tables, J. roy. Stat. Soc. 34 (1972), 187–220.

    Google Scholar 

  9. Crompton, N. E. A., M. Ozsahin: A routine assay of normal-tissue radiosensitivity based on induction of human leucocyte apoptosis. Radiat. Res. 147 (1997), 55–60.

    Article  PubMed  CAS  Google Scholar 

  10. Crompton, N. E. A., M. Ozsahin, B. Larsson: A rapid radiosensitivity assay based on radiation-induced apoptosis in leukocytes. In: Hagan, U., H. Jung, C. Streffer (eds.): Radiation research: 1895–1995. Universitäts Druckerei H. Stutz, AG, Würzburg 1995, P07–19, p. 181.

    Google Scholar 

  11. Daly, L. E., G. J. Bourke, J. McGilvray: Interpretation and uses of medical statistics, 4th ed. Blackwell Sci. Publ., Oxford 1991.

    Google Scholar 

  12. Elyan, S. A. G., C. M. L. West, S. A. Roberts, R. D. Hunter: Use of low-dose rate irradiation to measure the intrinsic radiosensitivity of human T-lymphcytes. Int. J. Radiat. Biol. 64 (1993), 375–383.

    Article  PubMed  CAS  Google Scholar 

  13. Elyan, S. A. G., C. M. L. West, S. A. Roberts, R. D. Hunter: Use of an internal standard in comparative measurements of the intrinsic radiosensitivities of human T-lymphcytes. Int. J. Radiat. Biol. 64 (1993), 385–391.

    Article  PubMed  CAS  Google Scholar 

  14. Floyd, D. N., A. M. Cassoni: Intrinsic radiosensitivity of adult and cord blood lymphocytes as determined by the micronucleus assay. Europ. J. Cancer 30-A (1994), 615–620.

    Article  Google Scholar 

  15. Fowler, J. F.: Potential for increasing the differential response between tumors and normal tissues: can proliferation rate be used? Int. J. Radiat. Oncol. Biol. Phys. 12 (1986), 641–645.

    PubMed  CAS  Google Scholar 

  16. Hart, R. M., B. F. Kimler, R. G. Evans, C. H. Park: Radiotherapeutic management of medulloblastoma in a pediatric patient with ataxia telangiectasia. Int. J. Radiat. Oncol. Biol. Phys. 13 (1995), 1237–1240.

    Google Scholar 

  17. Hoeckel, M., C. Knoop, K. Schlenger, B. Vorndran, E. Baussman, M. Mitze, P. G. Knapstein, P. Vaupel: Intratumoral pO2 predicts survival in advanced cancer of the uterine cervix. Radiother. Oncol. 26 (1993), 45–50.

    Article  Google Scholar 

  18. Hoeckel; M., K. Schlenger, C. Knoop, P. Vaupel: Oxygenation of carcinomas of the uterine cervix: Evaluation by computerized O2 tension measurements. Cancer Res. 51 (1991), 6098–6102.

    Google Scholar 

  19. Jones, L. A., D. Scott, R. Cowan, S. A. Roberts: Abnormal radiosensitivity of lymphocytes from breast cancer patients with excessive normal tissue damage after radiotherapy: chromosome aberrations after low dose-rate irradiation. Int. J. Radiat. Biol. 67 (1995), 519–528.

    Article  PubMed  CAS  Google Scholar 

  20. Kaplan, E. L., P. Meier: Non-parametric estimation from incomplete observations. J. Amer. stat. Ass. 53 (1958), 457–481.

    Article  Google Scholar 

  21. Kocagoncu, K. O., G. Marangoni, A. Cozzi-Fogliata, S. Griffin, G. Garavaglia, P. Thun, J. Bernier: Intrinsic radiosensitivity of head and neck carcinomas as predictive tests for clinical tumor control: comparative analysis and critical assessment of technical reliability. Radiat. Oncol. Invest. 2 (1994), 177–184.

    Article  Google Scholar 

  22. Maciejewski, B., G. Preuss-Bayer, K. R. Trott: The influence of the number of fractions and overall treatment time on local control and late complication rate in squamous cell carcinoma of the larynx. Int. J. Radiat. Oncol. Biol. Phys. 9 (1983), 321–328.

    PubMed  CAS  Google Scholar 

  23. Malaise, E. P., P. J. Deschavanne, B. Fertil: Intrinsic radiosensitivity of human cells. Adv. Radiat. Biol. 15 (1992), 37–71.

    Google Scholar 

  24. Martin, L., E. Lartigau, P. Weeger, P. Lambin, A. M. Le Ridant, A. Lusinchi, P. Wibault, F. Eschwege, B. Luboinski, M. Guichard: Changes in the oxygenation of head and neck tumors during carbogen breathing. Radiother. Oncol. 27 (1993), 123–130.

    Article  PubMed  CAS  Google Scholar 

  25. Matthews, D. E., V. T. Farewell: Using and understanding medical statistics, 2nd ed. Karger AG, Basel 1988.

    Google Scholar 

  26. Nilsson, S., J. Carlsson, B. Larsson, J. Ponten: Survival of irradiated glia and glioma cells studied with a new cloning technique. Int. J. Radiat. Biol. 37 (1980), 267–279.

    Article  CAS  Google Scholar 

  27. Norman, A., R. A. Kagan, S. L. Chan: The importance of genetics for the optimization of radiation therapy: a hypotesis. Amer. J. clin. Oncol. 11 (1988), 84–88.

    Article  CAS  Google Scholar 

  28. Olive, P. L., S. M. Jackson, R. E. Durand: Predicting tumor response to radiotherapy using the comet assay. In: Paliwal, B., D. Herbert, J. F. Fowler, T. J. Kinsella (eds.(: Prediction of response in radiation therapy: radiosensitivity and repopulation. American Institute of Physics, Inc. Woodbury, NY 1993, p. 65–76.

    Google Scholar 

  29. Peters, L. J.: Significance of genetic variability in radiosensitivity in clinical radiotherapy. J. Jap. Soc. Ther. Radiol. Oncol. 2 (1990), 247–253.

    Google Scholar 

  30. Peto, P., M. C. Pike, P. Armitage, M. E. Breslow, D. R. Cox, S. W. Howard, N. Mantel, K. McPherson, J. Peto, P. G. Smith: Design and analysis of randomised clinical trials requiring prolonged observation of each patient: Part II. Brit. J. Cancer 35 (1977), 1–39.

    PubMed  CAS  Google Scholar 

  31. Savitsky, K., A. Bar-Shira, S. Gilad, G. Rotman, Y. Ziv, L. Vanagaite, D. A. Tagle, S. Smith, T. Uziel, S. Sfez, M. Ashkenazi, I. Pecker, M. Frydman, R. Harnik, S. R. Patanjali, A. Simmons, G. A. Clines, A. Sartiel, R. A. Gatti, L. Chessa, O. Sanal, M. F. Lavin, N. G. J. Jaspers, A. M. R. Taylor, C. F. Arlett, T. Miki, S. M. Weissman, M. Lovett, F. S. Collins, Y. Shiloh: A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Nature 268 (1995), 1749–1753.

    CAS  Google Scholar 

  32. Sieber, P., A. Fateh-Moghadam: Tumormarker und ihr sinvoller Einsatz. Klin. Lab. 39 (1993), 291–306.

    Google Scholar 

  33. Stacey, M., S. Thacker, A. M. R. Taylor: Cultured skin keratinocytes from both normal individuals and basal cell naevus syndrome patients are more resistant to gamma-rays and UV light compared with cultured skin fibroblasts. Int. J. Radiat. Biol. 56 (1995), 45–58.

    Article  Google Scholar 

  34. Stewart C. C., A. P. Stevenson, R. C. Habbersett: The effect of low-dose irradiation on unstimulated and PHA-stimulated human lymphocyte subsets. Int. J. Radiat. Biol. 53 (1988), 77–87.

    Article  CAS  Google Scholar 

  35. Streffer, C.: Is the micronucleus assay predictive for cellular radiosensitivity? Brit. J. Radiol. 24 (1992), 70–73.

    CAS  Google Scholar 

  36. Taylor, A. M. R., D. G. Harnden, C. F. Arlett, S. A. Harcourt, A. R. Lehmann, S. Stevens, B. A. Bridges: Ataxia telangiectasia: a human mutation with abnormal radiation sensitivity. Nature 258 (1975), 427–429.

    Article  PubMed  CAS  Google Scholar 

  37. Tucker, S. L., H. D. Thames: The effect of patient-to-patient variability on the accuracy of predictive assays of tumor response to radiotherapy: a theoretical analysis. Int. J. Radiat. Oncol. Biol. Phys. 17 (1989), 145–157.

    PubMed  CAS  Google Scholar 

  38. Vaupel, P., K. Schlenger, C. Knoop, M. Hoeckel: Oxygenation of human tumors: evaluation of tissue oxygen distribution in breast cancers by computerized O2 tension measurements. Cancer Res. 51 (1991), 3316–3322.

    PubMed  CAS  Google Scholar 

  39. West, C. M. L., S. E. Davidson, P. A. Burt, R. D. Hunter: The intrinsic radiosensitivity of cervical carcinoma: correlations with clinical data. Int. J. Radiat. Oncol. Biol. Phys. 31 (1995), 841–846.

    PubMed  CAS  Google Scholar 

  40. West, C. M. L., J. H. Hendry: Intrinsic radiosensitivity as a predictor of patient response to radiotherapy. Brit. J. Radiol. 24 (1992), 146–152.

    CAS  Google Scholar 

  41. West, C. M. L., J. H. Hendry, D. Scott, S. E. Davidson, R. D. Hunter: 25th Paterson Symposium — Is there a future for radiosensitivity testing? Brit. J. Cancer 64 (1991), 197–199.

    PubMed  CAS  Google Scholar 

  42. Withers, H. R., J. M. G. Taylor, B. Maciejewski: The hazard of accelerated tumor clonogen repopulation during radiotherapy. Acta Oncol. 27 (1995), 131–146.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crompton, N.E.A., Ozsahin, M., Schweizer, P. et al. Theory and practice of predictive assays in radiation therapy. Strahlenther. Onkol. 173, 58–67 (1997). https://doi.org/10.1007/BF03038924

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03038924

Keywords

Navigation