Skip to main content

Advertisement

Log in

Genomic Predictors for Radiation Sensitivity and Toxicity in Breast Cancer—from Promise to Reality

  • Radiation Oncology (W Woodward, Section Editor)
  • Published:
Current Breast Cancer Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Precision medicine and personalized treatment recommendations have become standard for systemic therapy decision-making in women with breast cancer. Until recently, however, such opportunities have been lacking for radiation related treatment decisions.

Recent Findings

Recent studies have explored the utility of using genomic signatures developed to make systemic therapy recommendations (e.g. Oncotype DX®, ProSigna®, IHC4-C) to guide recommendations for radiation as well. Emerging data suggests that these signatures, while prognostic, may not identify radiation benefit. Radiation-specific signatures are currently under clinical development and may soon be ready for clinical implementation. These classifiers may better be able to determine radiation benefit and detect cancers with intrinsic radiation resistance.

Summary

We are beginning to realize the promise of precision medicine for radiation treatment decisions in women with breast cancer. Previously developed genomic signatures are currently being tested for radiation-related questions, and radiation-specific signatures and radiation toxicity biomarkers are moving into clinical implementation. These advances make clear that genomic classifiers show more than mere promise and will soon allow for personalized radiation recommendations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Clarke M, Collins R, Darby S, Davies C, Elphinstone P, Evans V, et al. Effects of radiotherapy and of differences in the extent of surgery for early breast cancer on local recurrence and 15-year survival: an overview of the randomised trials. Lancet. 2005;366(9503):2087–106.

    CAS  PubMed  Google Scholar 

  2. Darby S, McGale P, Correa C, Taylor C, Arriagada R, Clarke M, et al. Effect of radiotherapy after breast-conserving surgery on 10-year recurrence and 15-year breast cancer death: meta-analysis of individual patient data for 10,801 women in 17 randomised trials. Lancet. 2011;378(9804):1707–16.

    CAS  PubMed  Google Scholar 

  3. McGale P, Taylor C, Correa C, Cutter D, Duane F, Ewertz M, et al. Effect of radiotherapy after mastectomy and axillary surgery on 10-year recurrence and 20-year breast cancer mortality: meta-analysis of individual patient data for 8135 women in 22 randomised trials. Lancet. 2014;383(9935):2127–35.

    CAS  PubMed  Google Scholar 

  4. van der Leij F, Elkhuizen PH, Bartelink H, van de Vijver MJ. Predictive factors for local recurrence in breast cancer. Semin Radiat Oncol. 2012;22(2):100–7.

    PubMed  Google Scholar 

  5. Paik S, Shak S, Tang G, Kim C, Baker J, Cronin M, et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast Cancer. N Engl J Med. 2004;351(27):2817–26.

    CAS  PubMed  Google Scholar 

  6. Paik S, Tang G, Shak S, Kim C, Baker J, Kim W, et al. Gene expression and benefit of chemotherapy in women with node-negative, estrogen receptor–positive breast cancer. J Clin Oncol. 2006;24(23):3726–34.

    CAS  PubMed  Google Scholar 

  7. Sparano JA, Gray RJ, Makower DF, Pritchard KI, Albain KS, Hayes DF, et al. Adjuvant chemotherapy guided by a 21-gene expression assay in breast cancer. N Engl J Med. 2018;379(2):111–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Albain KS, Barlow WE, Shak S, Hortobagyi GN, Livingston RB, Yeh IT, et al. Prognostic and predictive value of the 21-gene recurrence score assay in postmenopausal women with node-positive, oestrogen-receptor-positive breast cancer on chemotherapy: a retrospective analysis of a randomised trial. Lancet Oncol. 2010;11(1):55–65.

    CAS  PubMed  Google Scholar 

  9. Dowsett M, Cuzick J, Wale C, Forbes J, Mallon EA, Salter J, et al. Prediction of risk of distant recurrence using the 21-gene recurrence score in node-negative and node-positive postmenopausal patients with breast cancer treated with anastrozole or tamoxifen: a TransATAC study. J Clin Oncol. 2010;28(11):1829–34.

    PubMed  Google Scholar 

  10. Dowsett M, Sestak I, Lopez-Knowles E, Sidhu K, Dunbier AK, Cowens JW, et al. Comparison of PAM50 risk of recurrence score with oncotype DX and IHC4 for predicting risk of distant recurrence after endocrine therapy. J Clin Oncol. 2013;31(22):2783–90.

    PubMed  Google Scholar 

  11. Cardoso F, van’t Veer LJ, Bogaerts J, Slaets L, Viale G, Delaloge S, et al. 70-gene signature as an aid to treatment decisions in early-stage breast cancer. N Engl J Med. 2016;375(8):717–29.

    CAS  PubMed  Google Scholar 

  12. Parker JS, Mullins M, Cheang MC, Leung S, Voduc D, Vickery T, et al. Supervised risk predictor of breast cancer based on intrinsic subtypes. J Clin Oncol. 2009;27(8):1160–7.

    PubMed  PubMed Central  Google Scholar 

  13. Perou CM, Sørlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, et al. Molecular portraits of human breast tumours. Nature. 2000;406(6797):747–52.

    CAS  PubMed  Google Scholar 

  14. Yeo B, Zabaglo L, Hills M, Dodson A, Smith I, Dowsett M. Clinical utility of the IHC4+C score in oestrogen receptor-positive early breast cancer: a prospective decision impact study. Br J Cancer. 2015;113(3):390–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Tramm T, Mohammed H, Myhre S, Kyndi M, Alsner J, Borresen-Dale AL, et al. Development and validation of a gene profile predicting benefit of postmastectomy radiotherapy in patients with high-risk breast cancer: a study of gene expression in the DBCG82bc cohort. Clin Cancer Res. 2014;20(20):5272–80.

    CAS  PubMed  Google Scholar 

  16. Eschrich SA, Pramana J, Zhang H, Zhao H, Boulware D, Lee JH, et al. A gene expression model of intrinsic tumor radiosensitivity: prediction of response and prognosis after chemoradiation. Int J Radiat Oncol Biol Phys. 2009;75(2):489–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. • Cui Y, Li B, Pollom EL, Horst KC, Li R. Integrating radiosensitivity and immune gene signatures for predicting benefit of radiotherapy in breast cancer. Clin Cancer Res. 2018;24(19):4754–62 This is the first study to report a radiation and immune-specific signature that was predictive of radiation benefit for invasive breast cancer in the validation dataset.

    PubMed  PubMed Central  Google Scholar 

  18. Speers C, Zhao S, Liu M, Bartelink H, Pierce LJ, Feng FY. Development and validation of a novel radiosensitivity signature in human breast cancer. Clin Cancer Res. 2015;21(16):3667–77.

    CAS  PubMed  Google Scholar 

  19. •• Sjostrom M, Chang SL, Fishbane N, Davicioni E, Zhao SG, Hartman L, et al. Clinicogenomic radiotherapy classifier predicting the need for intensified locoregional treatment after breast-conserving surgery for early-stage breast cancer. J Clin Oncol. 2019;37(35):3340–9 This is the first study to report a radiation benefit and resistance signature that was both prognostic for LR and predictive of radiation benefit for invasive breast cancer that was validated in a phase III randomized trial of +/− radiation.

    PubMed  PubMed Central  Google Scholar 

  20. Weichselbaum RR, Ishwaran H, Yoon T, Nuyten DS, Baker SW, Khodarev N, et al. An interferon-related gene signature for DNA damage resistance is a predictive marker for chemotherapy and radiation for breast cancer. Proc Natl Acad Sci U S A. 2008;105(47):18490–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Piening BD, Wang P, Subramanian A, Paulovich AG. A radiation-derived gene expression signature predicts clinical outcome for breast cancer patients. Radiat Res. 2009;171(2):141–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Nuyten DS, Kreike B, Hart AA, Chi JT, Sneddon JB, Wessels LF, et al. Predicting a local recurrence after breast-conserving therapy by gene expression profiling. Breast Cancer Res. 2006;8(5):R62.

    PubMed  PubMed Central  Google Scholar 

  23. Oh DS, Cheang MC, Fan C, Perou CM. Radiation-induced gene signature predicts pathologic complete response to neoadjuvant chemotherapy in breast cancer patients. Radiat Res. 2014;181(2):193–207.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Kim HS, Kim SC, Kim SJ, Park CH, Jeung HC, Kim YB, et al. Identification of a radiosensitivity signature using integrative metaanalysis of published microarray data for NCI-60 cancer cells. BMC Genomics. 2012;13:348.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Eschrich SA, Fulp WJ, Pawitan Y, Foekens JA, Smid M, Martens JW, et al. Validation of a radiosensitivity molecular signature in breast cancer. Clin Cancer Res. 2012;18(18):5134–43.

    PubMed  PubMed Central  Google Scholar 

  26. Torres-Roca JF, Fulp WJ, Caudell JJ, Servant N, Bollet MA, van de Vijver M, et al. Integration of a radiosensitivity molecular signature into the assessment of local recurrence risk in breast cancer. Int J Radiat Oncol Biol Phys. 2015;93(3):631–8.

    PubMed  PubMed Central  Google Scholar 

  27. •• Mamounas EP, Liu Q, Paik S, Baehner FL, Tang G, Jeong JH, et al. 21-Gene recurrence score and locoregional recurrence in node-positive/ER-positive breast cancer treated with chemo-endocrine therapy. J Natl Cancer Inst. 2017;109(4):djw259 This study was the first to demonstrate a correlation between a genomic classifier score and LRR in women with N+ breast cancer enrolled in a phase III randomized trial, albeit independent of radiation effect.

    PubMed Central  Google Scholar 

  28. Sjöström M, Staaf J, Edén P, Wärnberg F, Bergh J, Malmström P, et al. Identification and validation of single-sample breast cancer radiosensitivity gene expression predictors. Breast Cancer Res. 2018;20(1):64.

    PubMed  PubMed Central  Google Scholar 

  29. Sjöström M, Lundstedt D, Hartman L, Holmberg E, Killander F, Kovács A, et al. Response to radiotherapy after breast-conserving surgery in different breast cancer subtypes in the Swedish breast cancer group 91 radiotherapy randomized clinical trial. J Clin Oncol. 2017;35(28):3222–9.

    PubMed  Google Scholar 

  30. Kyndi M, Sorensen FB, Knudsen H, Overgaard M, Nielsen HM, Overgaard J. Estrogen receptor, progesterone receptor, HER-2, and response to postmastectomy radiotherapy in high-risk breast cancer: the Danish breast cancer cooperative group. J Clin Oncol. 2008;26(9):1419–26.

    CAS  PubMed  Google Scholar 

  31. Arvold ND, Taghian AG, Niemierko A, Abi Raad RF, Sreedhara M, Nguyen PL, et al. Age, breast cancer subtype approximation, and local recurrence after breast-conserving therapy. J Clin Oncol. 2011;29(29):3885–91.

    PubMed  PubMed Central  Google Scholar 

  32. Bremer T, Whitworth PW, Patel R, Savala J, Barry T, Lyle S, et al. A biological signature for breast ductal carcinoma in situ to predict radiotherapy benefit and assess recurrence risk. Clin Cancer Res. 2018;24(23):5895–901.

    PubMed  Google Scholar 

  33. Weinmann S, Leo M, Francisco M, Jenkins C, Barry T, Leesman G, et al. Validation of a ductal carcinoma in situ biomarker profile for risk of recurrence after breast-conserving surgery with and without radiation therapy. Clin Cancer Res. 2020;26(15):4054–63.

    PubMed  Google Scholar 

  34. Rakovitch E, Nofech-Mozes S, Hanna W, Baehner FL, Saskin R, Butler SM, et al. A population-based validation study of the DCIS score predicting recurrence risk in individuals treated by breast-conserving surgery alone. Breast Cancer Res Treat. 2015;152(2):389–98.

    PubMed  PubMed Central  Google Scholar 

  35. Punglia RS, Bifolck K, Golshan M, Lehman C, Collins L, Polyak K, et al. Epidemiology, biology, treatment, and prevention of ductal carcinoma in situ (DCIS). JNCI Cancer Spectr. 2018;2(4):pky063.

    PubMed  PubMed Central  Google Scholar 

  36. Mamounas EP, Tang G, Fisher B, Paik S, Shak S, Costantino JP, et al. Association between the 21-gene recurrence score assay and risk of locoregional recurrence in node-negative, estrogen receptor-positive breast cancer: results from NSABP B-14 and NSABP B-20. J Clin Oncol. 2010;28(10):1677–83.

    PubMed  PubMed Central  Google Scholar 

  37. Mamounas EP, Tang G, Fisher B, Paik S, Shak S, Costantino JP, Watson D, Geyer CE Jr, Wickerham DL, Wolmark N. Association between the 21-gene recurrence score assay and risk of locoregional recurrence in node-negative, estrogen receptor-positive breast cancer: results from NSABP B-14 and NSABP B-20. J Clin Oncol. 2010;28(10):1677–83. https://doi.org/10.1200/JCO.2009.23.7610.

  38. • Woodward WA, Barlow WE, Jagsi R, Buchholz TA, Shak S, Baehner F, et al. Association between 21-gene assay recurrence score and locoregional recurrence rates in patients with node-positive breast cancer. JAMA Oncology. 2020;6(4):505–11 This study further demonstrated a correlation between a genomic classifier score and LRR in women with N+ breast cancer (independent of radiation effect) from patients enrolled in a phase III randomized trial asking a non-radiation question.

    PubMed  PubMed Central  Google Scholar 

  39. Jegadeesh NK, Kim S, Prabhu RS, Oprea GM, Yu DS, Godette KG, et al. The 21-gene recurrence score and locoregional recurrence in breast cancer patients. Ann Surg Oncol. 2015;22(4):1088–94.

    PubMed  Google Scholar 

  40. Rosenstein BS. Radiogenomics: identification of genomic predictors for radiation toxicity. Semin Radiat Oncol. 2017;27(4):300–9.

    PubMed  PubMed Central  Google Scholar 

  41. Rosenstein BPG, Speers CW, Oh JH, West CML, Mayo CS.. Radiogenomics. In: L DJaX, editor. Big data in radiation oncology: CRC Press; 2019.

  42. •• West C, Rosenstein BS. Establishment of a radiogenomics consortium. Radiother Oncol : journal of the European Society for Therapeutic Radiology and Oncology. 2010;94(1):117–8 This paper describes the formation of the Radiogenomics Consortium, the largest group evaluating normal tissue toxicity biomarkers in breast cancer.

    Google Scholar 

  43. Andreassen CN, Rosenstein BS, Kerns SL, Ostrer H, De Ruysscher D, Cesaretti JA, et al. Individual patient data meta-analysis shows a significant association between the ATM rs1801516 SNP and toxicity after radiotherapy in 5456 breast and prostate cancer patients. Radiother Oncol : journal of the European Society for Therapeutic Radiology and Oncology. 2016;121(3):431–9.

    Google Scholar 

  44. Talbot CJ, Tanteles GA, Barnett GC, Burnet NG, Chang-Claude J, Coles CE, et al. A replicated association between polymorphisms near TNFα and risk for adverse reactions to radiotherapy. Br J Cancer. 2012;107(4):748–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Seibold P, Behrens S, Schmezer P, Helmbold I, Barnett G, Coles C, et al. XRCC1 polymorphism associated with late toxicity after radiation therapy in breast cancer patients. Int J Radiat Oncol Biol Phys. 2015;92(5):1084–92.

    CAS  PubMed  Google Scholar 

  46. Barnett GC, Coles CE, Elliott RM, Baynes C, Luccarini C, Conroy D, et al. Independent validation of genes and polymorphisms reported to be associated with radiation toxicity: a prospective analysis study. Lancet Oncol. 2012;13(1):65–77.

    CAS  PubMed  Google Scholar 

  47. Seibold P, Webb A, Aguado-Barrera ME, Azria D, Bourgier C, Brengues M, et al. REQUITE: a prospective multicentre cohort study of patients undergoing radiotherapy for breast, lung or prostate cancer. Radiother Oncol : journal of the European Society for Therapeutic Radiology and Oncology. 2019;138:59–67.

    Google Scholar 

  48. West C, Azria D, Chang-Claude J, Davidson S, Lambin P, Rosenstein B, et al. The REQUITE project: validating predictive models and biomarkers of radiotherapy toxicity to reduce side-effects and improve quality of life in cancer survivors. Clin Oncol. 2014;26(12):739–42.

    CAS  Google Scholar 

  49. • Sjostrom M, Chang SL, Fishbane N, Davicioni E, Hartman L, Holmberg E, et al. Comprehensive transcriptomic profiling identifies breast cancer patients who may be spared adjuvant systemic therapy. Clin Cancer Res. 2020;26(1):171–82 This study identifies a treatment omission genomic classifier that identifies patients who may omit adjvuant radiation and endocrine therapy if externally validated. It also directly compares all other genomic classifiers for this same endpoint.

    PubMed  Google Scholar 

  50. Prat A, Perou CM. Deconstructing the molecular portraits of breast cancer. Mol Oncol. 2011;5(1):5–23.

    CAS  PubMed  Google Scholar 

  51. Speers C, Chang SL, Pesch A, Ritter C, Olsen E, Chandler B, et al. A signature that may be predictive of early versus late recurrence after radiation treatment for breast cancer that may inform the biology of early, aggressive recurrences. Int J Radiat Oncol Biol Phys. 2020;108(3):686–96. https://doi.org/10.1016/j.ijrobp.2020.05.015.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Corey Speers.

Ethics declarations

Conflict of Interest

Corey Speers and Lori Pierce are co-founders of PFS Genomics and have a provisional patent pending on a method for the analysis of radiosensitivity.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Radiation Oncology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Speers, C., Pierce, L.J. Genomic Predictors for Radiation Sensitivity and Toxicity in Breast Cancer—from Promise to Reality. Curr Breast Cancer Rep 12, 255–265 (2020). https://doi.org/10.1007/s12609-020-00382-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12609-020-00382-z

Keywords

Navigation