Skip to main content
Log in

Conservation genetics of endangeredBrasenia schreberi based on RAPD and AFLP markers

  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

Brasenia schreberi J.F. Gmelin is a declared endangered species found in the lakes and ponds of South Korea. For planning its conservation strategy, we examined the genetic diversity within and among six populations, using randomly amplified polymorphic DNA (RAPD) and amplified fragment length polymorphism (AFLP). Polymorphisms were more frequently detected per loci with AFLP (69.3%) than RAPD (36.8%). High genetic diversity was recognized within populations: polymorphic loci (PPL) values ranged from 36.3% in the CJM population to 74.5% in the GGT population, with a mean value of 47.8% based on AFLP markers. Great genetic differentiation (θB) was detected among the six populations (0.670 on RAPD and 0.196 on AFLP), and we calculated a low rate of gene flow (Nem), i.e., 0.116 on RAPD and 0.977 on AFLP. Furthermore, a Mantel test revealed that no correlation existed between genetic distances and geographical distances among the six local populations, based on RAPD or AFLP markers. These results are attributed to a number of factors, including an insufficient length of time for genetic diversity to be reduced following a natural decline in population size and isolation, adaptation of the genetic system to small population conditions, and a restricted gene flow rate. Based on both its genetic diversity and population structure, we suggest that a strategy for conserving and restoringB. schreberi must focus on maintaining historical processes, such as high levels of outbreeding, while monitoring increased gene flow among populations. This is because a reduction in genetic diversity as a result of genetic drift is undesirable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Archak S, Gaiwad AB, Gautam D, Rao EVVB, Swamy KRM, Karihaloo JL (2003) Comparative assessment of DNA fingerprinting techniques (RAPD, ISSR, and AFLP) for genetic analysis of cashew (Anacardium occidentale L.) accessions of India. Genome 46: 362–369

    Article  PubMed  CAS  Google Scholar 

  • Aston, HI (1977) Aquatic Plants of Australia. Melbourne University Press, Australia, pp 46–48

    Google Scholar 

  • Bertin RI (1993) Incidence of monoecy and dichogamy in relation to self-fertilization in angiosperms. Amer J Bot 80: 557–560

    Article  Google Scholar 

  • Chen D-H, Ronald PC (1999) A rapid DNA minipreparation method suitable for AFLP and other PCR applications. Plant Mol Biol Rep 17: 53–57

    Article  CAS  Google Scholar 

  • Chen J, Gituru WR, Liu X, Wang Q (2007) Genetic diversity inIsoetes yunguiensis, a rare and endangered endemic fern in China. Front Biol China 2: 46–49

    Article  Google Scholar 

  • Chen Y-Y, Li X-L, Yin L-Y, Li W (2008) Genetic diversity of the threatened aquatic plantOttelia alismoides in Yangtze River. Aquat Bot 88: 10–16

    Article  Google Scholar 

  • Choi H-K (2007) Cabombaceae Rich ex A Rich,In C-w Park et al., eds, The Genera of Vascular Plants of Korea. Academy Publishing Co. Press, Seoul, p 163

    Google Scholar 

  • Chrysler MA (1938) The winter buds ofBrasenia. Bull Torrey Bot Club 65: 277–283

    Article  Google Scholar 

  • Dong Y-H, Chen J-M, Gituru RW, Wang Q-F (2007) Gene flow in populations of the endangered aquatic fernCeratopteris pteridoides in China as revealed by ISSR. Aquat Bot 87: 69–74

    Article  CAS  Google Scholar 

  • Elakovich SD, Wooten JW (1987) An examination of the phytotoxicity of the water shield,Brasenia schreberi. J Chem Ecol 13: 1935–1940

    Article  Google Scholar 

  • Excoffier L (1993) Analysis of Molecular Variance (AMOVA), ver. 1.55. Genetics and Biometry Laboratory, University of Geneva, Switzerland

    Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variation inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics 131: 479–491

    PubMed  CAS  Google Scholar 

  • Fischer M, Husi R, Prati D, Peintinger M, Kleunen M, Schmid B (2000) RAPD variation among and within small and large populations of the rare clonal plantRanunculus reptans (Ranunculaceae). Amer J Bot 87: 1128–1137

    Article  Google Scholar 

  • Griffin SR, Mavrganis K, Eckert CG (2000) Experimental analysis of protogyny inAquilegia canadensis (Ranunculaceae). Amer J Bot 87: 1246–1256

    Article  Google Scholar 

  • Hartl DL, Clark AG (1997) Principles of Population Genetics, 3rd ed. Sinauer Associates, Sunderland, MA, USA

    Google Scholar 

  • Holsinger KE, Lewis PO (2005) Hickory: A Package for Analysis of Population Genetic Data, ver. 1.0.4. Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA

    Google Scholar 

  • Holsinger KE, Lewis PO, Dey DK (2002) A Bayesian approach to inferring population structure from dominant markers. Mol Ecol 11: 1157–1164

    Article  PubMed  CAS  Google Scholar 

  • Kang M, Ye Q, Huang H (2005) Genetic consequence of restricted habitat and population decline in endangeredIsoetes sinensis (Isoetaceae). Ann Bot-London 96: 1265–1274

    Article  CAS  Google Scholar 

  • Keiper FJ, McConchie R (2000) An analysis of genetic variation in natural populations ofSticherus flabellatus [R. Br. (St John)] using amplified fragment length polymorphism (AFLP) markers. Mol Ecol 9: 571–581

    Article  PubMed  CAS  Google Scholar 

  • Kim C, Na HR, Choi H-K (2008) Genetic diversity and population structure of endangeredIsoetes coreana in South Korea based on RAPD analysis. Aquat Bot 89: 43–49

    Article  CAS  Google Scholar 

  • Kim Y-D (1996) Characterization of water and sediment environment in water shield (Brasenia schreberi) habitats. Kor J Ecol 19:209–216

    Google Scholar 

  • Koga K, Kadono Y, Setoguchi H (2007) The genetic structure of populations of the vulnerable aquatic macrophyteRanunculus nipponicus (Ranunculaceae). J Plant Res 120: 167–174

    Article  PubMed  Google Scholar 

  • Lee H-W, Choung H-L, Roh T-H, Kwon Y-H, Kim CH, Hyun J-O, Chang IS (2005) Categorization and Conservation of the Threatened Plant Species in Environmental Impact Assessment. Korea Environment Institute, Seoul

    Google Scholar 

  • Lee NS, Yean SH, Park JO, Roh MS (2006) Molecular evidence for hybridization ofIlex ×wandonensis (Aquifoliaceae) by RAPD analysis. J Plant Biol 49: 491–497

    Article  CAS  Google Scholar 

  • Lee S, Ma S, Lim Y, Choi H-K, Shin H (2004) Genetic diversity and its implications in the conservation of endangeredZostera japonica in Korea. J Plant Biol 47: 275–281

    Article  Google Scholar 

  • Lesica R Leary RF, Allendorf FW, Bilderback DE (1988) Lack of genetic diversity within and among populations of an endangered plant,Howellia aquatilis. Conserv Biol 2: 275–282

    Article  Google Scholar 

  • Li W, Xia L-Q, Li J-Q, Wang G-X (2004) Genetic diversity ofPotamogeton maackianus in the Yangtze River. Aquat Bot 80: 227–240

    Article  CAS  Google Scholar 

  • Liu R Yang YS, Hao CY, Guo WD (2007) Ecological risk assessment using RAPD and distribution pattern of a rare and endangered species. Chemosphere 68: 1497–1505

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Wang Y, Huang H (2006) High interpopulation genetic differentiation and unidirectional linear migration patterns inMyricaria laxiflora (Tamaricaceae), and endemic riparian plant in the Three Gorges Valley of the Yangtze River. Amer J Bot 93: 206–215.

    Article  Google Scholar 

  • Lopez-Pujol J, Font J, Simon J, Blanche C (2007) Can the preservation of historical relicts permit the conservation of endangered plant species? The case of Silenesennenii (Caryophyllaceae). Conserv Genet 8: 903–912

    Article  CAS  Google Scholar 

  • Loveless MD, Hamrick JL (1984) Ecological determinants of genetic structure in populations. Annu Rev Ecol Syst 15: 65–95

    Article  Google Scholar 

  • Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27: 209–220

    PubMed  CAS  Google Scholar 

  • Miller MP (1997) Tools for Population Genetics Analysis (TFGPA). A Windows Program for the Analysis of Allozyme and Molecular Population Genetic Data, ver. 1.3. Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA

    Google Scholar 

  • Miller MP (1998) AMOVA-PREP. A Program for the Preparation of Input Files from Dominant-marker Row Data, ver. 1.01. Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA

    Google Scholar 

  • Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89: 583–590

    PubMed  Google Scholar 

  • Oh MJ, Na H-R, Choi H-K, Liu JR, Kim SW (2008) High frequency plant regeneration from zygotic-embryo-derived embryogenic cell suspension cultures of watershield (Brasenia schreberi). Plant Biotechnol Rep 2: 87–92

    Article  Google Scholar 

  • Osborn JM, Schneider EL (1988) Morphological studies of the Nymphaceae sensulato. XVI. The floral biology ofBrasenia schreberi. Ann Mo Bot Gard 75: 778–794

    Article  Google Scholar 

  • Palacios C, Gonzalez-Candelas F (1999) AFLP analysis of the critically endangeredLimonium cavanillesii (Plumbaginaceae). J Hered 90: 485–489

    Article  Google Scholar 

  • Perez T, Albornoz J, Dominguez A (1998) An evaluation of RAPD fragment reproducibility and nature. Mol Ecol 7: 1347–1357

    Article  PubMed  CAS  Google Scholar 

  • Prentis PJ, Mather PB (2008) Fine-scale patterns of genetic variation indicate non-equilibrium gene frequency divergence in the stream lily,Helmholtzia glaberrima. Freshwater Biol 53: 973–980

    Article  Google Scholar 

  • Raymond M, Dansereau P (1953) The geographical distribution of the bipolar Nymphaceae,Nymphaea tetragona, andBrasenia schreberi. Proc Pacific Sci Congr 5: 122–131

    Google Scholar 

  • Rossetto M, Weaver PK, Dixon KW (1995) Use of RAPD analysis in devising conservation strategies for the rare and endangeredGrevillea scapigera (Proteaceae). Mol Ecol 4: 357–364

    Article  Google Scholar 

  • SAS Institute Inc (1999) SAS Proprietary Software, release 8.01. SAS Institute Inc., Cary, NC, USA

    Google Scholar 

  • Schneller JJ, Holderegger R (1996) Genetic variation in small, isolated fern populations. J Veg Sci 7: 113–120

    Article  Google Scholar 

  • Sehgal D, Raina SN (2005) Genotyping safflower (Carthamus tinctorius) cultivars by DNA fingerprints. Euphytica 146: 67–76

    Article  CAS  Google Scholar 

  • Shannon CE, Weaver W (1949) The Mathematical Theory of Communication. University of Illinois Press, Urbana, IL, USA

    Google Scholar 

  • Slatkin M (1987) Gene flow and geographic structure of natural populations. Science 236: 787–792

    Article  PubMed  CAS  Google Scholar 

  • Spiegelhalter DJ, Best NG, Carlin BP, van der Linde A (2002) Bayesian measures of model complexity and fit. J R Stat Soc [Ser. B] 64: 483–489

    Article  Google Scholar 

  • Swofford DL (1998) PAUP. Phylogenetic Analysis Using Parsimony and Other Methods, ver. 4.02. Sinauer Associates Inc., Sunderland, MA, USA

    Google Scholar 

  • Tang S, Bin X, Li W, Zhong Y (2006) Genetic diversity and population structure of yellow camellia (Camellia nitidissima) in China as revealed by RAPD and AFLP markers. Biochem Genet 44: 449–461

    Article  PubMed  CAS  Google Scholar 

  • Taylor ML, Osborn JM (2006) Pollen ontogeny inBrasenia (Cabombaceae, Nymphaeales). Amer J Bot 93: 344–356

    Article  Google Scholar 

  • Tero N, Aspi J, Siikamaki R Jakalaniemi A, Tuomi J (2003) Genetic structure and gene flow in a metapopulation of an endangered plant species,Silene tatarica. Mol Ecol 12: 2073–2085

    Article  PubMed  CAS  Google Scholar 

  • Uehara K, Tanaka N, Momohara A, Zhou Z-K (2006) Genetic diversity of an endangered aquatic plant,Potamogeton lucens subspeciessinicus. Aquat Bot 85: 350–354

    Article  CAS  Google Scholar 

  • Vos R, Hogers R, Bleeker M, van de Lee T, Hornes M, Fritgers A, Pot J, Pelemon J, Kuiper M, Zabeau M (1995) AFLP: A new technique for DNA fingerprinting. Nucl Acids Res 23: 4407–4414

    Article  PubMed  CAS  Google Scholar 

  • Waycott M, Barnes PAG (2001) AFLP diversity within and between populations of the Caribbean seagrassThalassia testudinum (Hydrocharitaceae). Mar Biol 139: 1021–1028

    Article  CAS  Google Scholar 

  • Wright S (1951) The genetical structure of populations. Ann Eugen 15: 323–354

    Google Scholar 

  • Xue J, Zhuo L, Zhou S (2006) Genetic diversity and geographic pattern of wild lotus (Nelumbo nucifera) in Heilongjiang Province. Chin Sci Bull 51: 421–432

    Article  CAS  Google Scholar 

  • Yeh F, Yang RC, Boyle T (1997) POPGENE. A User-friendly Shareware for Population Genetic Analysis, ver. 1.31. Molecular and Biotechnology Center, University of Alberta, Edmonton, Alberta, Canada

    Google Scholar 

  • Zawko G, Krauss SL, Dixon KW, Sivasithamparam K (2001) Conservation genetics of the rare and endangeredLeucopogon obtectus (Ericaceae). Mol Ecol 10: 2389–2396

    Article  PubMed  CAS  Google Scholar 

  • Zhang D, Chen S, Chen S, Zhang D, Gao Q (2007) Patterns of genetic variation inSwertia przewalskii, an endangered species of the Qinghai-Tibet Plateau. Biochem Genet 45: 33–50

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Keun Choi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, C., Na, H.R. & Choi, HK. Conservation genetics of endangeredBrasenia schreberi based on RAPD and AFLP markers. J. Plant Biol. 51, 260–268 (2008). https://doi.org/10.1007/BF03036125

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03036125

Keywords

Navigation