Skip to main content

Neurotoxicity of Methamphetamine

  • Living reference work entry
  • First Online:
Handbook of Neurotoxicity

Abstract

Recreational use and consumption of the highly addictive psychostimulant methamphetamine is a serious public health problem worldwide. Recent estimates indicate that methamphetamine abuse has increased in the last decade and that only cannabis is used by a greater number of consumers. Despite its popularity, methamphetamine is a known neurotoxin that damages dopaminergic terminals in the striatum, as indicated by reductions in striatal levels of dopamine and its metabolites and a sustained decrease in the expression of markers for dopaminergic terminals such as TH and DAT. In addition, methamphetamine affects the cell bodies of these same dopaminergic neurons in the substantia nigra, resulting in cell loss. The mechanisms underlying dopaminergic neurotoxicity are the focus of intense research and knowledge in this area has expanded in recent decades. Evidence from previous studies points to dysregulation of dopamine, oxidative stress, DNA damage, and mitochondrial dysfunction as the main cause of methamphetamine neurotoxicity. The dopamine receptors D1 and D2 also play an important role in methamphetamine-induced neurotoxicity since inactivation of either receptor is neuroprotective against methamphetamine. Results from clinical research indicate that methamphetamine abusers have a higher risk of developing Parkinson’s disease; this is in keeping with results in laboratory animals and confirms the persistence of methamphetamine-induced dopaminergic damage. These findings suggest that neuroprotective strategies that are effective against methamphetamine-induced toxicity are also promising candidates for preventive therapy for Parkinson’s disease and other persistent dopaminergic injuries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

ATS:

Amphetamine type stimulants

D1R:

Dopamine D1 receptor

D1R−/−:

D1R knockout mice

D2R:

Dopamine D2 receptor

D2R−/−:

D2R knockout mice

DAT:

Dopamine transporter

DOPAC:

3,4-Dihydroxyphenylacetic acid

Gclc:

γ-cysteine ligase catalitic subunit

Gclm:

γ-cysteine ligase modulatory subunit

GPx:

Glutathione peroxidase

HVA:

Homovanillic acid

MDMA:

3,4-methylendioxymethamphetamine also called “ecstasy”

Nrf2:

Nuclear factor-erythroid 2-related factor 2

PD:

Parkinson’s Disease

ROS:

Reactive oxygen species

SNpc:

Substantia nigra pars compacta

TH:

Tyrosine hydroxylase

VMAT2:

Vesicular monoamine transporter

References

  • Albers, D. S., & Sonsalla, P. K. (1995). Methamphetamine-induced hyperthermia and dopaminergic neurotoxicity in mice: pharmacological profile of protective and nonprotective agents. The Journal of Pharmacology and Experimental Therapeutics, 275, 1104–1114.

    CAS  PubMed  Google Scholar 

  • Ares-Santos, S., Granado, N., Oliva, I., O’Shea, E., Martin, E. D., Colado, M. I., & Moratalla, R. (2012). Dopamine D(1) receptor deletion strongly reduces neurotoxic effects of methamphetamine. Neurobiology of Disease, 45(2), 810–820.

    Article  CAS  PubMed  Google Scholar 

  • Ares-Santos, S., Granado, N., & Moratalla, R. (2013). The role of dopamine receptors in the neurotoxicity of methamphetamine. Journal of Internal Medicine, 273(5), 437–453. https://doi.org/10.1111/joim.12049

    Article  CAS  PubMed  Google Scholar 

  • Ares-Santos, S., Granado, N., Espadas, I., Martinez-Murillo, R., & Moratalla, R. (2014). Methamphetamine causes degeneration of dopamine cell bodies and terminals of the nigrostriatal pathway evidenced by silver staining. Neuropsychopharmacology, 39(5), 1066–1080. https://doi.org/10.1038/npp.2013.307

    Article  CAS  PubMed  Google Scholar 

  • Asanuma, M., Hayashi, T., Ordonèz, S. V., Ogawa, N., & Cadet, J. L. (2000). Direct interactions of methamphetamine with the nucleus. Brain Research. Molecular Brain Research, 80(2), 237–243.

    Article  CAS  PubMed  Google Scholar 

  • Biagioni, F., Ferese, R., Limanaqi, F., Madonna, M., Lenzi, P., Gambardella, S., & Fornai, F. (2019). Methamphetamine persistently increases alpha-synuclein and suppresses gene promoter methylation within striatal neurons. Brain Research, 1719, 157–175.

    Article  CAS  PubMed  Google Scholar 

  • Bourque, M., Liu, B., Dluzen, D. E., & Di Paolo, T. (2007). Tamoxifen protects male mice nigrostriatal dopamine against methamphetamine-induced toxicity. Biochemical Pharmacology, 74(9), 1413–1423.

    Article  CAS  PubMed  Google Scholar 

  • Bowyer, J. F., & Hanig, J. (2014). Amphetamine- and methamphetamine-induced hyperthermia: Implications of the effects produced in brain vasculature and peripheral organs to forebrain neurotoxicity. Temperature, 1(3), 172–182.

    Article  Google Scholar 

  • Bowyer, J. F., Davies, D. L., Schmued, L., Broening, H. W., Newport, G. D., Slikker, W., & Holson, R. R. (1994). Further studies of the role of hyperthermia in methamphetamine neurotoxicity. The Journal of Pharmacology and Experimental Therapeutics, 268(3), 1571–1580.

    CAS  PubMed  Google Scholar 

  • Brown, J. M., Quinton, M. S., & Yamamoto, B. K. (2005). Methamphetamine-induced inhibition of mitochondrial complex II: roles of glutamate and peroxynitrite. Journal of Neurochemistry, 95(2), 429–436.

    Article  CAS  PubMed  Google Scholar 

  • Butterfield, D. A., Reed, T., & Sultana, R. (2011). Roles of 3-nitrotyrosine- and 4-hydroxynonenal-modified brain proteins in the progression and pathogenesis of Alzheimer’s disease. Free Radical Research, 45(1), 59–72.

    Article  CAS  PubMed  Google Scholar 

  • Cadet, J. L., & Krasnova, I. N. (2009). Molecular bases of methamphetamine-induced neurodegeneration. International Review of Neurobiology, 88, 101–119. 1st ed., Elsevier.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Callaghan, R. C., Cunningham, J. K., Sykes, J., & Kish, S. J. (2012). Increased risk of Parkinson’s disease in individuals hospitalized with conditions related to the use of methamphetamine or other amphetamine-type drugs. Drug and Alcohol Dependence, 120, 35–40.

    Article  CAS  PubMed  Google Scholar 

  • Carmena, A., Granado, N., Ares-Santos, S., Alberquilla, S., Tizabi, Y., & Moratalla, R. (2015). Methamphetamine-induced toxicity in indusium griseum of mice is associated with astro- and microgliosis. Neurotoxicity Research, 27(3), 209–216.

    Article  CAS  PubMed  Google Scholar 

  • Chan, P., Di Monte, D. A., Luo, J. J., DeLanney, L. E., Irwin, I., & Langston, J. W. (1994). Rapid ATP loss caused by methamphetamine in the mouse striatum: relationship between energy impairment and dopaminergic neurotoxicity. Journal of Neurochemistry, 62(6), 2484–2487.

    Article  CAS  PubMed  Google Scholar 

  • Chen, J., Rusnak, M., Luedtke, R. R., & Sidhu, A. (2004). D1 dopamine receptor mediates dopamine-induced cytotoxicity via the ERK signal cascade. The Journal of Biological Chemistry, 279(38), 39317–39330.

    Article  CAS  PubMed  Google Scholar 

  • Chen, P.-C., Vargas, M. R., Pani, A. K., Smeyne, R. J., Johnson, D. A., Kan, Y. W., & Johnson, J. A. (2009). Nrf2-mediated neuroprotection in the MPTP mouse model of Parkinson’s disease: Critical role for the astrocyte. Proceedings of the National Academy of Sciences of the United States of America, 106(8), 2933–2938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clark, J., & Simon, D. K. (2009). Transcribe to survive: transcriptional control of antioxidant defense programs for neuroprotection in Parkinson’s disease. Antioxidants & Redox Signaling, 11(3), 509–528.

    Article  CAS  Google Scholar 

  • Clark, K. H., Wiley, C. A., & Bradberry, C. W. (2012). Psychostimulant abuse and neuroinflammation: Emerging evidence of their interconnection. Neurotoxicity Research, 23, 174–88.

    Google Scholar 

  • Curtin, K., Fleckenstein, A. E., Robison, R. J., Crookston, M. J., Smith, K. R., & Hanson, G. R. (2015). Methamphetamine/amphetamine abuse and risk of Parkinson’s disease in Utah: a population-based assessment. Drug and Alcohol Dependence, 146, 30–38.

    Article  CAS  PubMed  Google Scholar 

  • D’Astous, M., Mickley, K. R., Dluzen, D. E., & Di Paolo, T. (2005). Differential protective properties of estradiol and tamoxifen against methamphetamine-induced nigrostriatal dopaminergic toxicity in mice. Neuroendocrinology, 82(2), 111–120.

    Article  PubMed  CAS  Google Scholar 

  • Darmopil, S., Martín, A. B., De Diego, I. R., Ares, S., & Moratalla, R. (2009). Genetic inactivation of dopamine D1 but not D2 receptors inhibits L-DOPA-induced dyskinesia and histone activation. Biological Psychiatry, 66(6), 603–613.

    Article  CAS  PubMed  Google Scholar 

  • Degenhardt, L., Baker, A., & Maher, L. (2008). Methamphetamine: geographic areas and populations at risk, and emerging evidence for effective interventions. Drug and Alcohol Review, 27(3), 217–219.

    Article  PubMed  Google Scholar 

  • Deng, X., & Cadet, J. L. (2000). Methamphetamine-induced apoptosis is attenuated in the striata of copper-zinc superoxide dismutase transgenic mice. Brain Research. Molecular Brain Research, 83(1–2), 121–124.

    Article  CAS  PubMed  Google Scholar 

  • Dluzen, D. E. (2004). The effect of gender and the neurotrophin, BDNF, upon methamphetamine-induced neurotoxicity of the nigrostriatal dopaminergic system in mice. Neuroscience Letters, 359(3), 135–138.

    Article  CAS  PubMed  Google Scholar 

  • Eisch, A. J., & Marshall, J. F. (1998). Methamphetamine neurotoxicity: dissociation of striatal dopamine terminal damage from parietal cortical cell body injury. Synapse (New York, NY), 30(4), 433–445.

    Article  CAS  Google Scholar 

  • Espadas, I., Ortiz, O., García-Sanz, P., Sanz-Magro, A., Alberquilla, S., Solis, O., Delgado-García, J. M., Gruart, A., & Moratalla, R. (2021). Dopamine D2R is required for hippocampal-dependent memory and plasticity at the CA3-CA1 synapse. Cerebral Cortex, 31(4), 2187–2204.

    Article  PubMed  Google Scholar 

  • Eyerman, D. J., & Yamamoto, B. K. (2005). Lobeline attenuates methamphetamine-induced changes in vesicular monoamine transporter 2 immunoreactivity and monoamine depletions in the striatum. The Journal of Pharmacology and Experimental Therapeutics, 312(1), 160–169.

    Article  CAS  PubMed  Google Scholar 

  • Figueredo-Cardenas, G., Morello, M., Sancesario, G., Bernardi, G., Reiner, A., (1996) Colocalization of somatostatin, neuropeptide Y, neuronal nitric oxide synthase and NADPH-diaphorase in striatal interneurons in rats. Brain Res. 735(2):317–24.

    Article  CAS  PubMed  Google Scholar 

  • Fleckenstein, A. E., Metzger, R. R., Beyeler, M. L., Gibb, J. W., & Hanson, G. R. (1997). Oxygen radicals diminish dopamine transporter function in rat striatum. European Journal of Pharmacology, 334(1), 111–114.

    Article  CAS  PubMed  Google Scholar 

  • Fornai, F., Lenzi, P., Ferrucci, M., Lazzeri, G., di Poggio, A. B., Natale, G., Busceti, C. L., Biagioni, F., Giusiani, M., Ruggieri, S., & Paparelli, A. (2005). Occurrence of neuronal inclusions combined with increased nigral expression of alpha-synuclein within dopaminergic neurons following treatment with amphetamine derivatives in mice. Brain Research Bulletin, 65(5), 405–413.

    Article  CAS  PubMed  Google Scholar 

  • Fumagalli, F., Gainetdinov, R. R., Valenzano, K. J., & Caron, M. G. (1998). Role of dopamine transporter in methamphetamine-induced neurotoxicity: evidence from mice lacking the transporter. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 18(13), 4861–4869.

    Article  CAS  Google Scholar 

  • Gómez-Benito, M., Granado, N., García-Sanz, P., Michel, A., Dumoulin, M., Moratalla, R., (2020) Modeling Parkinson’s Disease With the Alpha-Synuclein Protein. Front Pharmacol.11:356

    Google Scholar 

  • Granado, N., O’Shea, E., Bove, J., Vila, M., Colado, M. I., & Moratalla, R. (2008a). Persistent MDMA-induced dopaminergic neurotoxicity in the striatum and substantia nigra of mice. Journal of Neurochemistry, 107(4), 1102–1112.

    CAS  PubMed  Google Scholar 

  • Granado, N., Ortiz, O., Suárez, L. M., Martín, E. D., Ceña, V., Solís, J. M., & Moratalla, R. (2008b). D1 but not D5 dopamine receptors are critical for LTP, spatial learning, and LTP-Induced arc and zif268 expression in the hippocampus. Cerebral Cortex (New York, NY: 1991), 18(1), 1–12.

    Google Scholar 

  • Granado, N., Ares-Santos, S., O’Shea, E., Carlos Vicario-Abejón, M., Colado, I., & Moratalla, R. (2010). Selective vulnerability in striosomes and in the nigrostriatal dopaminergic pathway after methamphetamine administration: early loss of TH in striosomes after methamphetamine. Neurotoxicity Research, 18(1), 48–58.

    Article  PubMed  Google Scholar 

  • Granado, N., Ares-Santos, S., Oliva, I., O’Shea, E., Martin, E. D., Isabel Colado, M., & Moratalla, R. (2011a). Dopamine D2-receptor knockout mice are protected against dopaminergic neurotoxicity induced by methamphetamine or MDMA. Neurobiology of Disease, 42(3), 391–403.

    Article  CAS  PubMed  Google Scholar 

  • Granado, N., Lastres-Becker, I., Ares-Santos, S., Oliva, I., Martin, E., Cuadrado, A., & Moratalla, R. (2011b). Nrf2 deficiency potentiates methamphetamine-induced dopaminergic axonal damage and gliosis in the striatum. Glia, 59(12), 1850–1863.

    Article  PubMed  Google Scholar 

  • Granado, N., Ares-Santos, S., & Moratalla, R. (2013). Methamphetamine and Parkinson’s disease. Parkinsons Dis., 2013, 308052.

    PubMed  PubMed Central  Google Scholar 

  • Granado, N., Ares-Santos, S., Tizabi, Y., & Moratalla, R. (2018). Striatal reinnervation process after acute methamphetamine-induced dopaminergic degeneration in mice. Neurotoxicity Research, 34(3), 627–639.

    Article  CAS  PubMed  Google Scholar 

  • Hirata, H., Ladenheim, B., Carlson, E., Epstein, C., & Lud, J. (1996). Dopaminergic loss in mouse brain: attenuation in CuZn-superoxide dismutase transgenic mice. 714, 95–103.

    Google Scholar 

  • Hirata, H., Asanuma, M., & Cadet, J. L. (1998). Superoxide radicals are mediators of the effects of methamphetamine on Zif268 (Egr-1, NGFI-A) in the brain: evidence from using CuZn superoxide dismutase transgenic mice. Brain Research. Molecular Brain Research, 58(1–2), 209–216.

    Article  CAS  PubMed  Google Scholar 

  • Hurtig, H. I., Trojanowski, J. Q., Galvin, J., Ewbank, D., Schmidt, M. L., Lee, V. M., Clark, C. M., Glosser, G., Stern, M. B., Gollomp, S. M., & Arnold, S. E. (2000). Alpha-synuclein cortical Lewy bodies correlate with dementia in Parkinson’s disease. Neurology, 54(10), 1916–1921.

    Article  CAS  PubMed  Google Scholar 

  • Imam, S. Z., Newport, G. D., Itzhak, Y., Cadet, J. L., Islam, F., Slikker, W., Jr., & Ali, S. F. (2001). Peroxynitrite plays a role in methamphetamine-induced dopaminergic neurotoxicity: evidence from mice lacking neuronal nitric oxide synthase gene or overexpressing copper-zinc superoxide dismutase. Journal of Neurochemistry, 76(3), 745–749.

    Article  CAS  PubMed  Google Scholar 

  • Itzhak, Y., Gandia, C., Huang, P. L., & Ali, S. F. (1998). Resistance of neuronal nitric oxide synthase-deficient mice to methamphetamine-induced dopaminergic neurotoxicity. The Journal of Pharmacology and Experimental Therapeutics, 284(3), 1040–1047.

    CAS  PubMed  Google Scholar 

  • Itzhak, Y., Martin, J. L., & Ali, S. F. (2002). Methamphetamine-induced dopaminergic neurotoxicity in mice: long-lasting sensitization to the locomotor stimulation and desensitization to the rewarding effects of methamphetamine. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 26(6), 1177–1183.

    Article  CAS  Google Scholar 

  • Jayanthi, S., Ladenheim, B., & Cadet, J. L. (1998). Methamphetamine-induced changes in antioxidant enzymes and lipid peroxidation in copper/zinc-superoxide dismutase transgenic mice. Annals of the New York Academy of Sciences, 844, 92–102.

    Article  CAS  PubMed  Google Scholar 

  • Jayanthi, S., Deng, X., Ladenheim, B., McCoy, M. T., Cluster, A., Cai, N.-S., & Cadet, J. L. (2005). Calcineurin/NFAT-induced up-regulation of the Fas ligand/Fas death pathway is involved in methamphetamine-induced neuronal apoptosis. Proceedings of the National Academy of Sciences of the United States of America, 102(3), 868–873.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jayanthi, S., McCoy, M. T., Beauvais, G., Ladenheim, B., Gilmore, K., Wood, W., Becker, K., & Cadet, J. L. (2009). Methamphetamine induces dopamine D1 receptor-dependent endoplasmic reticulum stress-related molecular events in the rat striatum. PLoS One, 4(6), e6092.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jayanthi, S., Daiwile, A. P., & Cadet, J. L. (2021). Neurotoxicity of methamphetamine: main effects and mechanisms. Experimental Neurology, 2021(344), 113795.

    Article  CAS  Google Scholar 

  • Jeng, W., Ramkissoon, A., Parman, T., & Wells, P. G. (2006). Prostaglandin H synthase-catalyzed bioactivation of amphetamines to free radical intermediates that cause CNS regional DNA oxidation and nerve terminal degeneration. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 20(6), 638–650.

    Article  CAS  Google Scholar 

  • Johnson, J. A., Johnson, D. A., Kraft, A. D., Calkins, M. J., Jakel, R. J., Vargas, M. R., & Chen, P.-C. (2008). The Nrf2-ARE pathway: an indicator and modulator of oxidative stress in neurodegeneration. Annals of the New York Academy of Sciences, 1147, 61–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson, Z., Venters, J., Guarraci, F. A., & Zewail-Foote, M. (2015). Methamphetamine induces DNA damage in specific regions of the female rat brain. Clinical and Experimental Pharmacology & Physiology, 42, 570–575.

    Article  CAS  Google Scholar 

  • Kim, B., Yun, J., & Park, B. (2020). Methamphetamine-induced neuronal damage: neurotoxicity and neuroinflammation. Biomol Ther (Seoul), 28(5), 381–388.

    Article  Google Scholar 

  • Krasnova, I. N., & Cadet, J. L. (2009). Methamphetamine toxicity and messengers of death. Brain Research Reviews, 60(2), 379–407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larsen, K. E., Fon, E. A., Hastings, T. G., Edwards, R. H., & Sulzer, D. (2002). Methamphetamine-induced degeneration of dopaminergic neurons involves autophagy and upregulation of dopamine synthesis. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 22(20), 8951–8960.

    Article  CAS  Google Scholar 

  • LaVoie, M. J., & Hastings, T. G. (1999). Dopamine quinone formation and protein modification associated with the striatal neurotoxicity of methamphetamine: evidence against a role for extracellular dopamine. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 19(4), 1484–1491.

    Article  CAS  Google Scholar 

  • Li, Y.-h., Wang, H.-j., & Qiao, D.-f. (2008). Effect of methamphetamine on the microglial cells and activity of nitric oxide synthases in rat striatum. Nan fang yi ke da xue xue bao = Journal of Southern Medical University, 28(10), 1789–1791.

    PubMed  Google Scholar 

  • Li, B., Chen, R., Chen, L., Qiu, P., Ai, X., Huang, E., Huang, W., Chen, C., Liu, C., Lin, Z., Xie, W. B., & Wang, H. (2016). Effects of DDIT4 in methamphetamine-induced autophagy and apoptosis in dopaminergic neurons. Molecular Neurobiology, 54, 1642–1660.

    Article  PubMed  CAS  Google Scholar 

  • Limanaqi, F., Busceti, C. L., Celli, R., Biagioni, F., & Fornai, F. (2021). Autophagy as a gateway for the effects of methamphetamine: From neurotransmitter release and synaptic plasticity to psychiatric and neurodegenerative disorders. Progress in Neurobiology, 204, 102112.

    Article  CAS  PubMed  Google Scholar 

  • Lo, S.-C., Li, X., Henzl, M. T., Beamer, L. J., & Hannink, M. (2006). Structure of the Keap1:Nrf2 interface provides mechanistic insight into Nrf2 signaling. The EMBO Journal, 25(15), 3605–3617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuzaki, H., Namikawa, K., Kiyama, H., Mori, N., & Sato, K. (2004). Brain-derived neurotrophic factor rescues neuronal death induced by methamphetamine. Biological Psychiatry, 55(1), 52–60.

    Article  CAS  PubMed  Google Scholar 

  • McCann, U. D., Wong, D. F., Yokoi, F., Villemagne, V., Dannals, R. F., & Ricaurte, G. A. (1998). Reduced striatal dopamine transporter density in abstinent methamphetamine and methcathinone users: evidence from positron emission tomography studies with [11C]WIN-35,428. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 18(20), 8417–8422.

    Article  CAS  Google Scholar 

  • Melega, W. P., Lacan, G., Desalles, A. A., & Phelps, M. E. (2000). Long-term methamphetamine-induced decreases of [(11)C]WIN 35,428 binding in striatum are reduced by GDNF: PET studies in the vervet monkey. Synapse (New York, NY), 35(4), 243–249.

    Article  CAS  Google Scholar 

  • Mendieta, L., Granado, N., Aguilera, J., Tizabi, Y., & Moratalla, R. (2016). Fragment C domain of tetanus toxin mitigates methamphetamine neurotoxicity and its motor consequences in mice. The International Journal of Neuropsychopharmacology, 19(8), pyw021.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Miller, D. B., & O’Callaghan, J. P. (2003). Elevated environmental temperature and methamphetamine neurotoxicity. Environmental Research, 92(1), 48–53.

    Article  CAS  PubMed  Google Scholar 

  • Nash, J. F., & Yamamoto, B. K. (1992). Methamphetamine neurotoxicity and striatal glutamate release: comparison to 3,4-methylenedioxymethamphetamine. Brain Research, 581(2), 237–243.

    Article  CAS  PubMed  Google Scholar 

  • O’Callaghan, J. P., & Miller, D. B. (1994). Neurotoxicity profiles of substituted amphetamines in the C57BL/6J mouse. The Journal of Pharmacology and Experimental Therapeutics, 270(2), 741–751.

    PubMed  Google Scholar 

  • Ortiz, O., Delgado-García, J. M., Espadas, I., Bahí, A., Trullas, R., Dreyer, J.-L., Gruart, A., & Moratalla, R. (2010). Associative learning and CA3-CA1 synaptic plasticity are impaired in D1R null, Drd1a−/− mice and in hippocampal siRNA silenced Drd1a mice. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 30(37), 12288–12300.

    Article  CAS  Google Scholar 

  • Rangasamy, T., Cho, C. Y., Thimmulappa, R. K., Zhen, L., Srisuma, S. S., Kensler, T. W., Yamamoto, M., Petrache, I., Tuder, R. M., & Biswal, S. (2004). Genetic ablation of Nrf2 enhances susceptibility to cigarette smoke-induced emphysema in mice. The Journal of Clinical Investigation, 114(9), 1248–1259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryskalin, L., Puglisi-Allegra, S., Lazzeri, G., Biagioni, F., Busceti, C. L., Balestrini, L., Fornasiero, A., Leone, S., Pompili, E., Ferrucci, M., & Fornai, F. (2021). Neuroprotective effects of curcumin in methamphetamine-induced toxicity. Molecules, 26(9), 2493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sattler, R., & Tymianski, M. (2000). Molecular mechanisms of calcium-dependent excitotoxicity. Journal of Molecular Medicine (Berlin, Germany), 78(1), 3–13.

    Article  CAS  Google Scholar 

  • Solís, O., García-Sanz, P., Martín, A. B., Granado, N., Sanz-Magro, A., Podlesniy, P., Trullas, R., Murer, M. G., Maldonado, R., & Moratalla, R. (2021). Behavioral sensitization and cellular responses to psychostimulants are reduced in D2R knockout mice. Addiction Biology, 26(1), e12840.

    Article  PubMed  CAS  Google Scholar 

  • Song, D. D., & Haber, S. N. (2000). Striatal responses to partial dopaminergic lesion: evidence for compensatory sprouting. The Journal of Neuroscience, 20(13), 5102–5114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sonsalla, P. K., Gibb, J. W., & Hanson, G. R. (1986). Roles of D1 and D2 dopamine receptor subtypes in mediating the methamphetamine-induced changes in monoamine systems. The Journal of Pharmacology and Experimental Therapeutics, 238(3), 932–937.

    CAS  PubMed  Google Scholar 

  • Sonsalla, P. K., Nicklas, W. J., & Heikkila, R. E. (1989). Role for excitatory amino acids in methamphetamine-induced nigrostriatal dopaminergic toxicity. Science (New York, N.Y.), 243(4889), 398–400.

    Article  CAS  Google Scholar 

  • Sriram, K., Miller, D. B., & O’Callaghan, J. P. (2006). Minocycline attenuates microglial activation but fails to mitigate striatal dopaminergic neurotoxicity: role of tumor necrosis factor-alpha. Journal of Neurochemistry, 96(3), 706–718.

    Article  CAS  PubMed  Google Scholar 

  • Subu, R., Jayanthi, S., & Cadet, J. L. (2020). Compulsive methamphetamine taking induces autophagic and apoptotic markers in the rat dorsal striatum. Archives of Toxicology, 94, 3515–3526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sulzer, D., Sonders, M. S., Poulsen, N. W., & Galli, A. (2005). Mechanisms of neurotransmitter release by amphetamines: a review. Progress in Neurobiology, 75(6), 406–433.

    Article  CAS  PubMed  Google Scholar 

  • Thomas, D. M., Francescutti-Verbeem, D. M., & Kuhn, D. M. (2008a). The newly synthesized pool of dopamine determines the severity of methamphetamine-induced neurotoxicity. Journal of Neurochemistry, 105(3), 605–616.

    Article  CAS  PubMed  Google Scholar 

  • Thomas, D. M., Francescutti-Verbeem, D. M., & Kuhn, D. M. (2008b). Methamphetamine-induced neurotoxicity and microglial activation are not mediated by fractalkine receptor signaling. Journal of Neurochemistry, 106(2), 696–705. https://doi.org/10.1111/j.1471-4159.2008.05421.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • UNODC. (2021). World drug report 2021 (United Nations publication, Sales no. E.21.XI.8).

    Google Scholar 

  • Urrutia, A., Granado, N., Gutierrez-Lopez, M. D., Moratalla, R., O’Shea, E., & Colado, M. I. (2014). The JNK inhibitor, SP600125, potentiates the glial response and cell death induced by methamphetamine in the mouse striatum. The International Journal of Neuropsychopharmacology, 17(2), 235–246.

    Article  CAS  PubMed  Google Scholar 

  • Volkow, N. D., Chang, L., Wang, G. J., Fowler, J. S., Franceschi, D., Sedler, M., Gatley, S. J., Miller, E., Hitzemann, R., Ding, Y. S., & Logan, J. (2001a). Loss of dopamine transporters in methamphetamine abusers recovers with protracted abstinence. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 21(23), 9414–9418.

    Article  CAS  Google Scholar 

  • Volkow, N. D., Chang, L., Wang, G. J., Fowler, J. S., Leonido-Yee, M., Franceschi, D., Sedler, M. J., Gatley, S. J., Hitzemann, R., Ding, Y. S., Logan, J., Wong, C., & Miller, E. N. (2001b). Association of dopamine transporter reduction with psychomotor impairment in methamphetamine abusers. The American Journal of Psychiatry, 158(3), 377–382.

    Article  CAS  PubMed  Google Scholar 

  • Wagner, G. C., Carelli, R. M., & Jarvis, M. F. (1986). Ascorbic acid reduces the dopamine depletion induced by methamphetamine and the 1-methyl-4-phenyl pyridinium ion. Neuropharmacology, 25(5), 559–561.

    Article  CAS  PubMed  Google Scholar 

  • White, N. M., & Hiroi, N. (1998). Preferential localization of self-stimulation sites in striosomes/patches in the rat striatum. Proceedings of the National Academy of Sciences of the United States of America, 95(11), 6486–6491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, M., Su, H., & Zhao, M. (2021). The role of α-synuclein in methamphetamine-induced neurotoxicity. Neurotoxicity Research, 39(3), 1007–1021. https://doi.org/10.1007/s12640-021-00332-2

    Article  CAS  PubMed  Google Scholar 

  • Xie, T., McCann, U. D., Kim, S., Yuan, J., & Ricaurte, G. A. (2000). Effect of temperature on dopamine transporter function and intracellular accumulation of methamphetamine: implications for methamphetamine-induced dopaminergic neurotoxicity. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 20(20), 7838–7845.

    Article  CAS  Google Scholar 

  • Xu, X., Huang, E., Luo, B., Cai, D., Zhao, X., Luo, Q., Jin, Y., Chen, L., Wang, Q., Liu, C., Lin, Z., Xie, W. B., & Wang, H. (2018). Methamphetamine exposure triggers apoptosis and autophagy in neuronal cells by activating the C/EBPβ-related signaling pathway. The FASEB Journal, 25, fj201701460RRR.

    Google Scholar 

  • Yamamoto, B. K., & Zhu, W. (1998). The effects of methamphetamine on the production of free radicals and oxidative stress. The Journal of Pharmacology and Experimental Therapeutics, 287(1), 107–114.

    CAS  PubMed  Google Scholar 

  • Yang, X., Wang, Y., Li, Q., Zhong, Y., Chen, L., Du, Y., He, J., Liao, L., Xiong, K., Yi, C. X., & Yan, J. (2018). The main molecular mechanisms underlying methamphetamine- induced neurotoxicity and implications for pharmacological treatment. Frontiers in Molecular Neuroscience, 11, 186.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang, G., Zeng, X., Li, J., Leung, C. K., Zhang, D., Hong, S., He, Y., Huang, J., Li, L., & Li, Z. (2019). Protective effect of gastrodin against methamphetamine-induced autophagy in human dopaminergic neuroblastoma SH-SY5Y cells via the AKT/mTOR signaling pathway. Neuroscience Letters, 707, 134287.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosario Moratalla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Moratalla, R., Ares-Santos, S., Granado, N. (2022). Neurotoxicity of Methamphetamine. In: Kostrzewa, R.M. (eds) Handbook of Neurotoxicity. Springer, Cham. https://doi.org/10.1007/978-3-030-71519-9_123-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-71519-9_123-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-71519-9

  • Online ISBN: 978-3-030-71519-9

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics