Skip to main content
Log in

Annular alpha-synuclein oligomers are potentially toxic agents in alpha-synucleinopathy. Hypothesis

  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Recently, we demonstrated that soluble 30–50 nm-sized nnular α-synuclein oligomers are released by mild detergent treatment from glial cytoplasmic inclusions (GCIs) purified from multiple system atrophy brain tissue (Pountneyet al., J. Neurochem. 90:502, 2004). Dynamic antibody recognition imaging using a specific anti-α-synuclein antibody confirmed that the annular structures were positive for α-synuclein. This showed that pathological α-synucleinopathy aggregates can be a source of annular α-synuclein species. In contrast to pathological α-synuclein, recombinant α-synuclein yielded only spherical oligomers after detergent treatment, indicating a greater propensity of the pathological protein to form stable annular oligomers.In vitro, we found that Ca2+ binding to monomeric α-synuclein, specifically amongst a range of different metal ions, induced the rapid formation of annular oligomers (Loweet al., Protein Sci., 13:3245, 2004). Hence, α-synuclein speciation may also be influenced by the intracytoplasmic Ca2+ concentration. We also showed that annular α-synuclein oligomers can nucleate filament formation. We hypothesize that soluble α-synuclein annular oligomers may be cytotoxic species, either by interacting with cell membranes or components of the ubiquitin proteasome system. The equilibrium between α-synuclein species may be influenced by intracellular Ca2+ status, interaction with lipid vesicles or other factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AFM:

atomic force microscopy

CHAPS:

3-[(3-Cholamidopropyl) dimethyl-ammonio]-1 -propanesul-fonate

DLB:

dementia with Lewy bodies

GCI:

glial cytoplasmic inclusion

LB:

Lewy body

MSA:

multiple system atrophy

ROS:

reactive oxygen species

PD:

Parkinson’s disease

References

  • Bucciantini M, E Giannoni, F Chiti, F Baroni, L Formigli, J Zurdo, N Taddel, G Ramponi, C Dobson and M Stefani (2002) Inherent toxity of aggregates implies a common mechanism for protein misfolding diseases.Nature 416, 507–511.

    Article  PubMed  CAS  Google Scholar 

  • Campbell BC, CA McLean, JG Culvenor, WP Gai, PC Blumbergs, P Jakala, K Beyreuther, CL Masters and QX Li (2001) Solubility of α-synuclein differs between multiple system atrophy and dementia with Lewy bodies.J. Neurochem. 76, 87–96.

    Article  PubMed  CAS  Google Scholar 

  • Chartier-Harlin MC, J Kachergus, C Roumier, V Mouroux, X Douay, S Lincoln, C Levecque, L Larvor, J Andrieux, M Hulihan, N Waucquier, L Defebvre, P Amouyel, M Farrer and A Destee (2004) α-Synuclein locus duplication as a cause of familial Parkinson’s disease.Lancet 364, 1167–1169.

    Article  PubMed  CAS  Google Scholar 

  • Choi P, N Golts, H Snyder, M Chong, L Petrucelli, J Hardy, D Sparkman, E Cochran, JM Lee and B Wolozin (2001) Co-association f parkin and α-synuclein.Neuroreport 12, 2839–2843.

    Article  PubMed  CAS  Google Scholar 

  • Conway K, J Harper and PT Lansbury (2000a) Fibrils formedin vitro from α-synuclein and two mutant forms linked to Parkinson’s disease are typical amyloid.Biochemistry 39, 2552–2563.

    Article  PubMed  CAS  Google Scholar 

  • Conway KA, S Lee, J Rochet, T Ding, R Williamson and P Lansbury Jr (2000b) Acceleration of oligomerization, not fibrillization, is a shared property of both α-synuclein mutations linked to early-onset Parkinson’s disease: implications for pathogenesis and therapy.Proc. Natl. Acad. Sci. USA 99, 571–576.

    Article  Google Scholar 

  • Crocker S J, PD Smith, V Jackson-Lewis, WR Lamba, SP Hayley, E Grimm, SM Callaghan, RS Slack, E Melloni, S Przedborski, GS Robertson, H Anisman, Z Merali and DS Park (2003) Inhibition of calpains prevents neuronal and behavioral deficits in an MPTP mouse model of Parkinson’s disease.J. Neurosci. 23, 4081–4091.

    PubMed  CAS  Google Scholar 

  • Cuervo AM, L Stefanis, R Fredenburg, PT Lansbury and D Sulzer (2004) Impaired degradation of mutantC-synuclein by chaperone-mediated autophagy.Science 305, 1292–1295.

    Article  PubMed  CAS  Google Scholar 

  • Davidson WS, A Jonas, DF Clayton and JM George (1998) Stabilization of ?-synuclein secondary structure upon binding to synthetic membranes.J. Biol. Chem. 273, 9443–9449.

    Article  PubMed  CAS  Google Scholar 

  • Ding T, S Lee, J Rochet and PT Lansbury (2002) Annular α-synuclein protofibrils are produced when spherical protofibrils are incubated in solution or bound to brain derived membranes.Biochemistry 41, 10209–10217.

    Article  PubMed  CAS  Google Scholar 

  • Eliezer D, E Kutluay, R Bussell and G Browne (2001) Conformational properties of α-synuclein in its free and lipidassociated states.J. Mol. Biol. 307, 10661–10673.

    Article  Google Scholar 

  • Fang Y, S Cheley, H Bayley and J Yang (1997) The heptameric prepore of a staphylococcal ?-hemolysin mutant in lipid bilayers imaged by atomic force microscopy.Biochemistry 36, 9518–9522.

    Article  PubMed  CAS  Google Scholar 

  • Feany MB and WW Bender (2000) ADrosophila model of Parkinson’s disease.Nature 404, 394–398.

    Article  Google Scholar 

  • Fernandez-Lopez S, H-S Kim, EC Choi, M M Delgado, JR Granja, A Khasanov, K Kraehenbuehl, G Long, DA Weinberger, KM Wilcoxen and MR Ghadiri (2001) Antibacterial agents based on the cyclic D,L-α-peptide architecture.Nature 412, 452–455.

    Article  PubMed  CAS  Google Scholar 

  • Fotiadis D, S Scheuring, SA Muller, A Engel and DJ Muller (2002) maging and manipulation of biological structures with the AFM.Micron 33, 385–397.

    Article  PubMed  CAS  Google Scholar 

  • Gai WP, JHT Power, PC Blumbergs and WW Blessing (1998) Multiple system atrophy - a new α-synuclein disease?Lancet 352, 547–548.

    Article  PubMed  CAS  Google Scholar 

  • Gai WP, JHT Power, PC Biumbergs, JG Culvenor and PH Jensen (1999) α-Synuclein immunoisolation of glial inclusions from multiple system atrophy brain tissue reveals multiprotein components.J. Neurochem. 73, 2093–2100.

    PubMed  CAS  Google Scholar 

  • Gai WP, HX Yuan, QX Li, JHT Power, PC Blumbergs and PH Jensen (2000)In situ andin vitro study of colocalization and segregation of α-synuclein, ubiquitin and lipids in cortical Lewy bodies.Exp. Neurol. 166, 324–333.

    Article  PubMed  CAS  Google Scholar 

  • Gai WP, DL Pountney, JHT Power, QX Li, JG Culvenor, CA McLean, PH Jensen and PC Blumbergs (2003) α-Synuclein fibrils constitute the central core of oligodendroglial inclusion filaments in multiple system atrophy.Exp. Neurol. 181, 68–78.

    Article  PubMed  CAS  Google Scholar 

  • Goedert M (2001) α-Synuclein and neurodegenerative diseases.Nat. Rev. Neurosci. 2, 492–501.

    Article  PubMed  CAS  Google Scholar 

  • Goedert M and MG Spillantini (1998) Lewy body diseases and multiple system atrophy as α-synucleinopathies.Mol. Psychiatry 3, 462–465.

    Article  PubMed  CAS  Google Scholar 

  • Hatters DM, CA MacRaild, R Daniels, WS Gosal, NH Thomson, JA Jones, JJ Davis, CE MacPhee, CM Dobson and GJ Howlett (2003) The circularization of amyloid fibrils formed by apolipoprotein C-II.Biophys. J. 85, 3979–3990.

    Article  PubMed  CAS  Google Scholar 

  • Jensen PH and WP Gai (2001) α-Synuclein. Axonal transport, ligand interaction and neurodegeneration.Adv. Exp. Med. Biol.: Neuropath. Genet. Dementia 487, 129–134.

    CAS  Google Scholar 

  • Jensen PH, K Islam, JM Kenney, MS Nielsen, J Power and WP Gai (2000) Microtubule-associated protein 1B is a component of cortical Lewy bodies and binds α-synuclein filaments.J. Biol. Chem. 275, 21500–21507.

    Article  PubMed  CAS  Google Scholar 

  • Kahle PJ, M Neumann, L Ozmen, V Muller, H Jacobsen, W Spooren, B Fuss, B Mallon, WB Macklin, H Fujiwara, M Hasegawa, T Iwatsubo, HA Kretzschmar and C Haass (2002) Hyperphosphorylation and insolubility of α-synuclein in transgenic mouse oligodendrocytes.EMBO Rep. 3, 583–588.

    Article  PubMed  CAS  Google Scholar 

  • Kanda S, JF Bishop, MA Eglitis, Y Yang and MM Mouradian (2000) Enhanced vulnerability to oxidative stress byC-synuclein mutations and C-terminal truncation.Neuroscience 97, 279–284.

    Article  PubMed  CAS  Google Scholar 

  • Kitada T, S Asakawa, N Hattori, H Matsumine, Y Yamamura, S Minoshima, M Yokochi, Y Mizuno and N Shimizu (1998) Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism.Nature 392, 605–608.

    Article  PubMed  CAS  Google Scholar 

  • Kopito RR (2000) Aggresomes, inclusion bodies and protein aggregation.Trends Cell. Biol. 10, 524–530.

    Article  PubMed  CAS  Google Scholar 

  • Kruger R, W Kuhn, T Muller, D Woitalla, M Graeber, S Kosel, H Przuntek, JT Epplen, L Schols and O Riess (1998) Ala30Pro mutation in the gene encoding α-synuclein in Parkinson’s disease.Nat. Genet. 18, 106–108.

    Article  PubMed  CAS  Google Scholar 

  • Lashuel H, B Petre, J Wall, M Simon, R Nowak, T Walz and PT Lansbury (2002) α-Synuclein, especially the Parkinson’s disease-associated mutants, forms pore-like annular and tubular protofibrils.J. Mol. Biol. 322, 1089–1102.

    Article  PubMed  CAS  Google Scholar 

  • Lee HJ and SJ Lee (2002) Characterization of cytoplasmic α-synuclein aggregates. Fibril formation is tightly linked to the inclusion-forming process in cells.J. Biol. Chem. 277, 48976–48983.

    Article  PubMed  CAS  Google Scholar 

  • Li J, VN Uversky and AL Fink (2001) Effect of familial Parkinson’s disease point mutations A30P and A53T on the structural properties, aggregation, and fibrillation of human α-synuclein.Biochemistry 40, 11604–11613.

    Article  PubMed  CAS  Google Scholar 

  • Lindersson E, R Beedholm, P Højrup, T Moos, WP Gai, KB Hendil and PH Jensen (2004) Proteasomal inhibition by α-synuclein filaments and oligomers.J. Biol. Chem. 279, 12924–12934.

    Article  PubMed  CAS  Google Scholar 

  • Lowe R, DL Pountney, PH Jensen, WP Gai and NH Voelcker (2004) Ca2+ selectively induces α-synuclein annular oligomers via interaction with the C-terminal domain.Protein Sci. 13(12), 3245–3252. Epub 2004 Nov 10.

    Article  PubMed  CAS  Google Scholar 

  • Malisauskas M, V Zamotin, J Jass, W Noppe, CM Dobson and LA Morozova-Roche (2003) Amyloid protofilaments from the Ca2+-binding protein equine lysozyme: formation of ring and linear structures depends on pH and metal ion concentration.J. Mol. Biol. 330, 879–890.

    Article  PubMed  CAS  Google Scholar 

  • Martinez J, I Moeller, H Erdjument-Bromage, P Tempst and B Lauring (2003) Parkinson’s disease-associated α-synuclein is a calmodulin substrate.J. Biol. Chem. 278, 17379–17387.

    Article  PubMed  CAS  Google Scholar 

  • Masliah E, E Rockenstein, I Veinbergs, M Mallory, M Hashimoto, A Takeda, Y Sagara, A Sisk and L Mucke (2000) Dopaminergic loss and inclusion body formation in α-synuclein mice: implications for neurodegenerative disorders.Science 287, 1265–1269.

    Article  PubMed  CAS  Google Scholar 

  • McLean PJ, H Kawamata and BT Hyman (2001) α-Synucleinenhanced green fluorescent protein fusion proteins form proteasome sensitive inclusions in primary neurons.Neuroscience 104, 901–912.

    Article  PubMed  CAS  Google Scholar 

  • McNaught KS, P Shashidharan, DP Perl, P Jenner and CW Olanow (2002) Aggresome-related biogenesis of Lewy bodies.Eur. J. Neurosci. 16, 2136–2148.

    Article  PubMed  Google Scholar 

  • Mishizen-Eberz AJ, RP Guttmann, BI Giasson, GA Day 3rd, R Hodara, H Ischiropoulos, VM Lee, JQ Trojanowski and DR Lynch (2003) Distinct cleavage patterns of normal and pathologic forms of α-synuclein by calpain Iin vitro.J. Neurochem. 86, 836–847.

    Article  PubMed  CAS  Google Scholar 

  • Nielsen MS, H Vorum, E Lindersson and PH Jensen (2001) Ca2+ binding to α-synuclein regulates ligand binding and oligomerization.J. Biol. Chem. 276, 22680–22684.

    Article  PubMed  CAS  Google Scholar 

  • Outeiro TF and S Lindquist (2003) Yeast cells provide insight into α-synuclein biology and pathobiology.Science 302, 1772–1775.

    Article  PubMed  CAS  Google Scholar 

  • Polymeropoulos MH, C Lavedan, E Leroy, SE Ide, A Dehejia,A Dutra, B Pike, H Root, J Rubenstein, R Boyer, ES Stenroos, S Chandrasekharappa, A Athanassiadou, T Papapetropoulos, WG Johnson, AM Lazzarini, RC Duvoisin, G Di Iorio, LI Golbe and RL Nussbaum (1997) Mutation in the α-synuclein gene identified in families with Parkinson’s disease.Science 276, 2045–2047.

    Article  PubMed  CAS  Google Scholar 

  • Pountney DL, R Lowe, M Quilty, JC Vickers, NH Voelcker and WP Gai (2004) Annular α-synuclein species from purified multiple system atrophy inclusions.J. Neurochem. 90, 502–512

    Article  PubMed  CAS  Google Scholar 

  • Power JHT, J Shanon, PC Blumbergs and WP Gai (2002) Non-selenium glutathione peroxidase in human brain: elevated level in Parkinson’s disease and dementia with Lewy bodies.Am. J. Pathol. 161, 885–894.

    PubMed  CAS  Google Scholar 

  • Quilty MC, WP Gai, DL Pountney, AK West and JC Vickers (2003) Localisation of α-, β- and γ-synuclein during neuronal development and alterations associated with the neuronal response to axonal trauma.Exp. Neurol. 182, 195–207.

    Article  PubMed  CAS  Google Scholar 

  • Raab A, W Han, D Badt, SJ Smith-Gill, SM Lindsay, H Schindler and P Hinterdorfer (1999) Antibody recognition imaging by force microscopy.Nat. Biotech. 17, 902–905.

    CAS  Google Scholar 

  • Schlossmacher MG, MP Frosch, WP Gai, M Medina, H Shimura, T Ochiishi, N Hattori, Y Mizuno, DJ Selkoe and KS Kosik (2002) Parkin and α-synuclein interact in normal brain and colocalize in Lewy bodies of Parkinson disease.Am. J. Pathol. 160, 1655–1667.

    PubMed  CAS  Google Scholar 

  • Shimura H, MG Schlossmacher, N Hattori, MP Frosch, A Trockenbacher, R Schneider, Y Mizuno, KS Kosik and DJ Selkoe (2001) Ubiquitination of a new form of ?-synuclein by parkin from human brain: implications for Parkinson’s disease.Science 293, 263–269.

    Article  PubMed  CAS  Google Scholar 

  • Singleton AB, M Farrer, J Johnson, A Singleton, S Hague, J Kachergus, M Hulihan, T Peuralinna, A Dutra, R Nussbaum, S Lincoln, A Crawley, M Hanson, D Maraganore, C Adler, MR Cookson, M Muenter, M Baptista, D Miller, J Blancato, J Hardy and K Gwinn-Hardy (2003) α-Synuclein locus triplication causes Parkinson’s disease.Science 302, 841.

    Article  PubMed  CAS  Google Scholar 

  • Snyder H, K Mensah, C Theisler, J Lee, A Matouschek and B Wolozin (2003) Aggregated and monomeric α-synuclein bind to the S6’ proteasomal protein and inhibit proteasomal function.J. Biol. Chem. 278, 11753–11759.

    Article  PubMed  CAS  Google Scholar 

  • Song L, MR Hobaugh, C Shustak, S Cheley, H Bayley and JE Gouaux (1996) Structure of staphylococcal α-hemolysin, a heptameric transmembrane pore.Science 274, 1859–1866.

    Article  PubMed  CAS  Google Scholar 

  • Souza JM, BI Giasson, Q Chen, VM Lee and H Ischiropoulos (2000) Dityrosine cross-linking promotes formation of stable α-synuclein polymers. Implication of nitrative and oxidative stress in the pathogenesis of neurodegenerative synucleinopathies.J. Biol. Chem. 275, 18344–18349.

    Article  PubMed  CAS  Google Scholar 

  • Stefanova N, L Klimaschewski, W Poewe, GK Wenning and M Reindl (2001) Glial cell death induced by overexpression of α-synuclein.J. Neurosci. Res. 65, 432–438.

    Article  PubMed  CAS  Google Scholar 

  • Tompkins MM, WP Gai, S Douglas and SJ Bunn (2003) α-Synuclein expression localizes to the Golgi apparatus in bovine adrenal medullary chromaffin cells.Brain Res. 984, 233–236.

    Article  PubMed  CAS  Google Scholar 

  • Ueda K, H Fukushima, E Masliah, Y Xia, A Iwai, M Yoshimoto, DA Otero, J Kondo, Y Ihara and T Saitoh (1993) Molecular cloning of cDNA encoding an unrecognized component of amyloid in Alzheimer disease.Proc. Natl. Acad. Sci. USA 90, 11282–11286.

    Article  PubMed  CAS  Google Scholar 

  • Uversky VN, J Li and AL Fink (2001) Metal-triggered structural transformations, aggregation, and fibrillation of human α-synuclein. A possible molecular link between Parkinson’s disease and heavy metal exposure.J. Biol. Chem. 276, 44284–44296.

    Article  PubMed  CAS  Google Scholar 

  • Volles MJ and PT Lansbury Jr (2002) Vesicle permeabilization by protofibrillar α-synuclein is sensitive to Parkinson’s diseaselinked mutations and occurs by a pore-like mechanism.Biochemistry 41, 4595–4602.

    Article  PubMed  CAS  Google Scholar 

  • Volles MJ and PT Lansbury Jr (2003) Zeroing in on the pathogenic form of ?-synuclein and its mechanism of neurotoxicity in Parkinson’s disease.Biochemistry 42, 7871–7878.

    Article  PubMed  CAS  Google Scholar 

  • Weinreb PH, W Zhen, AW Poon, KA Conway and PT Lansbury Jr (1996) NACP, a protein implicated in Alzheimer’s disease and learning, is natively unfolded.Biochemistry 35, 13709–13715.

    Article  PubMed  CAS  Google Scholar 

  • Wenning GK, C Colosimo, F Geser and W Poewe (2004) Multiple system atrophy.Lancet Neurol. 3, 93–103.

    Article  PubMed  Google Scholar 

  • Zarranz JJ, J Alegre, JC Gomez-Esteban, E Lezcano, R Ros, I Ampuero, L Vidal, J Hoenicka, O Rodriguez, B Atares, V Llorens, E Gomez Tortosa, Tdel Ser, DG Munoz and JG de Yebenes (2004) The new mutation, E46K, of α-synuclein causes Parkinson and Lewy body dementia.Ann. Neurol. 55, 164–173.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Ping Gai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pountney, D.L., Voelcker, N.H. & Gai, W.P. Annular alpha-synuclein oligomers are potentially toxic agents in alpha-synucleinopathy. Hypothesis. neurotox res 7, 59–67 (2005). https://doi.org/10.1007/BF03033776

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03033776

Keywords

Navigation