Skip to main content

Advertisement

Log in

Subcellular Parkinson’s Disease-Specific Alpha-Synuclein Species Show Altered Behavior in Neurodegeneration

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Parkinson’s disease and other synucleinopathies are characterized by the presence of intra-neuronal protein aggregates enriched in the presynaptic protein α-synuclein. α-synuclein is considered an intrinsically disordered 14 kDa monomer, and although poorly understood, its transition to higher-order multimeric species may play central roles in healthy neurons and during Parkinson’s disease pathogenesis. In this study, we demonstrate that α-synuclein exists as defined, subcellular-specific species that change characteristics in response to oxidative stress in neuroblastoma cells and in response to Parkinson’s disease pathogenesis in human cerebellum and frontal cortex. We further show that the phosphorylation patterns of different α-synuclein species are subcellular specific and dependent on the oxidative environment. Using high-performance liquid chromatography and mass spectrometry, we identify a Parkinson’s disease enriched, cytosolic ~36-kDa α-synuclein species which can be recapitulated in Parkinson’s disease model neuroblastoma cells. The characterization of subcellular-specific α-synuclein features in neurodegeneration will allow for the identification of neurotoxic α-synuclein species, which represent prime targets to reduce α-synuclein pathogenicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

PD:

Parkinson’s disease

ROS:

Reactive oxygen species

a-syn:

α-synuclein

HPLC:

High-performance liquid chromatography

LDH:

Lactate dehydrogenase

EGFR:

Epidermal growth factor receptor

Tim23:

Translocase of the inner membrane 23

HEK293:

Human embryonic 293 cells

Wt:

Wild type

References

  1. Aguzzi A, O’Connor T (2010) Protein aggregation diseases: pathogenicity and therapeutic perspectives. Nat Rev Drug Discov 9(3):237–248. doi:10.1038/nrd3050

    Article  CAS  PubMed  Google Scholar 

  2. Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M (1997) Alpha-synuclein in Lewy bodies. Nature 388(6645):839–840. doi:10.1038/42166

    Article  CAS  PubMed  Google Scholar 

  3. Vekrellis K, Xilouri M, Emmanouilidou E, Rideout HJ, Stefanis L (2011) Pathological roles of alpha-synuclein in neurological disorders. Lancet Neurol 10(11):1015–1025. doi:10.1016/S1474-4422(11)70213-7

    Article  CAS  PubMed  Google Scholar 

  4. Chartier-Harlin MC, Kachergus J, Roumier C, Mouroux V, Douay X, Lincoln S, Levecque C, Larvor L et al (2004) Alpha-synuclein locus duplication as a cause of familial Parkinson's disease. Lancet 364(9440):1167–1169. doi:10.1016/s0140-6736(04)17103-1

    Article  CAS  PubMed  Google Scholar 

  5. Singleton AB, Farrer M, Johnson J, Singleton A, Hague S, Kachergus J, Hulihan M, Peuralinna T et al (2003) Alpha-synuclein locus triplication causes Parkinson’s disease. Science 302(5646):841. doi:10.1126/science.1090278

    Article  CAS  PubMed  Google Scholar 

  6. Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, Pike B, Root H et al (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 276(5321):2045–2047

    Article  CAS  PubMed  Google Scholar 

  7. Wales P, Pinho R, Lazaro DF, Outeiro TF (2013) Limelight on alpha-synuclein: pathological and mechanistic implications in neurodegeneration. Journal of Parkinson’s Disease 3(4):415–459. doi:10.3233/JPD-130216

    CAS  PubMed  Google Scholar 

  8. Kruger R, Kuhn W, Muller T, Woitalla D, Graeber M, Kosel S, Przuntek H, Epplen JT et al (1998) Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson’s disease. Nat Genet 18(2):106–108. doi:10.1038/ng0298-106

    Article  CAS  PubMed  Google Scholar 

  9. Appel-Cresswell S, Vilarino-Guell C, Encarnacion M, Sherman H, Yu I, Shah B, Weir D, Thompson C et al (2013) Alpha-synuclein p.H50Q, a novel pathogenic mutation for Parkinson’s disease. Movement Disorders: Official Journal of the Movement Disorder Society 28(6):811–813. doi:10.1002/mds.25421

    Article  CAS  Google Scholar 

  10. Proukakis C, Houlden H, Schapira AH (2013) Somatic alpha-synuclein mutations in Parkinson’s disease: hypothesis and preliminary data. Movement Disorders: Official Journal of the Movement Disorder Society 28(6):705–712. doi:10.1002/mds.25502

    Article  Google Scholar 

  11. Lesage S, Anheim M, Letournel F, Bousset L, Honore A, Rozas N, Pieri L, Madiona K et al (2013) G51D alpha-synuclein mutation causes a novel parkinsonian-pyramidal syndrome. Ann Neurol 73(4):459–471. doi:10.1002/ana.23894

    Article  CAS  PubMed  Google Scholar 

  12. Dettmer U, Newman AJ, von Saucken VE, Bartels T, Selkoe D (2015) KTKEGV repeat motifs are key mediators of normal alpha-synuclein tetramerization: their mutation causes excess monomers and neurotoxicity. Proc Natl Acad Sci U S A. doi:10.1073/pnas.1505953112

    PubMed  PubMed Central  Google Scholar 

  13. Conway KA, Harper JD, Lansbury PT (1998) Accelerated in vitro fibril formation by a mutant alpha-synuclein linked to early-onset Parkinson disease. Nat Med 4(11):1318–1320. doi:10.1038/3311

    Article  CAS  PubMed  Google Scholar 

  14. Tong J, Wong H, Guttman M, Ang LC, Forno LS, Shimadzu M, Rajput AH, Muenter MD et al (2010) Brain alpha-synuclein accumulation in multiple system atrophy, Parkinson’s disease and progressive supranuclear palsy: a comparative investigation. Brain: a Journal of Neurology 133(Pt 1):172–188. doi:10.1093/brain/awp282

    Article  Google Scholar 

  15. Bartels T, Choi JG, Selkoe DJ (2011) Alpha-synuclein occurs physiologically as a helically folded tetramer that resists aggregation. Nature 477(7362):107–110. doi:10.1038/nature10324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Burre J, Sharma M, Sudhof TC (2012) Systematic mutagenesis of alpha-synuclein reveals distinct sequence requirements for physiological and pathological activities. The Journal of Neuro Science: the Official Journal of the Society for Neuroscience 32(43):15227–15242. doi:10.1523/jneurosci.3545-12.2012

    CAS  Google Scholar 

  17. Abdullah R, Basak I, Patil KS, Alves G, Larsen JP, Moller SG (2014) Parkinson's disease and age: the obvious but largely unexplored link. Exp Gerontol. doi:10.1016/j.exger.2014.09.014

    PubMed  Google Scholar 

  18. Anderson JP, Walker DE, Goldstein JM, de Laat R, Banducci K, Caccavello RJ, Barbour R, Huang J et al (2006) Phosphorylation of Ser-129 is the dominant pathological modification of alpha-synuclein in familial and sporadic Lewy body disease. J Biol Chem 281(40):29739–29752. doi:10.1074/jbc.M600933200

    Article  CAS  PubMed  Google Scholar 

  19. Paleologou KE, El-Agnaf OM (2012) Alpha-synuclein aggregation and modulating factors. Subcell Biochem 65:109–164. doi:10.1007/978-94-007-5416-4_6

    Article  CAS  PubMed  Google Scholar 

  20. Davidson WS, Jonas A, Clayton DF, George JM (1998) Stabilization of alpha-synuclein secondary structure upon binding to synthetic membranes. J Biol Chem 273(16):9443–9449

    Article  CAS  PubMed  Google Scholar 

  21. McLean PJ, Kawamata H, Ribich S, Hyman BT (2000) Membrane association and protein conformation of alpha-synuclein in intact neurons. Effect of Parkinson’s disease-linked mutations. J Biol Chem 275(12):8812–8816

    Article  CAS  PubMed  Google Scholar 

  22. Galvagnion C, Buell AK, Meisl G, Michaels TC, Vendruscolo M, Knowles TP, Dobson CM (2015) Lipid vesicles trigger alpha-synuclein aggregation by stimulating primary nucleation. Nat Chem Biol 11(3):229–234. doi:10.1038/nchembio.1750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fortin DL, Troyer MD, Nakamura K, Kubo S, Anthony MD, Edwards RH (2004) Lipid rafts mediate the synaptic localization of alpha-synuclein. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience 24(30):6715–6723. doi:10.1523/jneurosci.1594-04.2004

    Article  CAS  Google Scholar 

  24. Wang JD, Huang CC, Hwang YH, Chiang JR, Lin JM, Chen JS (1989) Manganese induced parkinsonism: an outbreak due to an unrepaired ventilation control system in a ferromanganese smelter. Br J Ind Med 46(12):856–859

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Camponeschi F, Valensin D, Tessari I, Bubacco L, Dell’Acqua S, Casella L, Monzani E, Gaggelli E et al (2013) Copper(I)-alpha-synuclein interaction: structural description of two independent and competing metal binding sites. Inorg Chem 52(3):1358–1367. doi:10.1021/ic302050m

    Article  CAS  PubMed  Google Scholar 

  26. Montes S, Rivera-Mancia S, Diaz-Ruiz A, Tristan-Lopez L, Rios C (2014) Copper and copper proteins in Parkinson's disease. Oxidative Med Cell Longev 2014:147251. doi:10.1155/2014/147251

    Article  Google Scholar 

  27. Xu Y, Li K, Qin W, Zhu B, Zhou Z, Shi J, Wang K, Hu J et al (2015) Unraveling the role of hydrogen peroxide in alpha-synuclein aggregation using an ultrasensitive Nanoplasmonic probe. Anal Chem 87(3):1968–1973. doi:10.1021/ac5043895

    Article  CAS  PubMed  Google Scholar 

  28. Stansley BJ, Yamamoto BK (2013) l-Dopa-induced dopamine synthesis and oxidative stress in serotonergic cells. Neuropharmacology 67:243–251. doi:10.1016/j.neuropharm.2012.11.010

    Article  CAS  PubMed  Google Scholar 

  29. Mazzulli JR, Xu YH, Sun Y, Knight AL, McLean PJ, Caldwell GA, Sidransky E, Grabowski GA et al (2011) Gaucher disease glucocerebrosidase and alpha-synuclein form a bidirectional pathogenic loop in synucleinopathies. Cell 146(1):37–52. doi:10.1016/j.cell.2011.06.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Selkoe D, Choi J, Kim N, Bartels T (2011) Nondenaturing purification of α-synuclein from erythrocytes. Protocol Exchange

  31. Burre J, Vivona S, Diao J, Sharma M, Brunger AT, Sudhof TC (2013) Properties of native brain alpha-synuclein. Nature 498(7453):E4–E6 . doi:10.1038/nature12125discussion E6-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kontopoulos E, Parvin JD, Feany MB (2006) Alpha-synuclein acts in the nucleus to inhibit histone acetylation and promote neurotoxicity. Hum Mol Genet 15(20):3012–3023. doi:10.1093/hmg/ddl243

    Article  CAS  PubMed  Google Scholar 

  33. Patil KS, Basak I, Lee S, Abdullah R, Larsen JP, Moller SG (2014) PARK13 regulates PINK1 and subcellular relocation patterns under oxidative stress in neurons. J Neurosci Res 92(9):1167–1177. doi:10.1002/jnr.23396

    Article  CAS  PubMed  Google Scholar 

  34. Zhang G, Deinhardt K, Chao MV, Neubert TA (2011) Study of neurotrophin-3 signaling in primary cultured neurons using multiplex stable isotope labeling with amino acids in cell culture. J Proteome Res 10(5):2546–2554. doi:10.1021/pr200016n

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26(12):1367–1372. doi:10.1038/nbt.1511

    Article  CAS  PubMed  Google Scholar 

  36. Candiano G, Bruschi M, Musante L, Santucci L, Ghiggeri GM, Carnemolla B, Orecchia P, Zardi L et al (2004) Blue silver: a very sensitive colloidal Coomassie G-250 staining for proteome analysis. Electrophoresis 25(9):1327–1333. doi:10.1002/elps.200305844

    Article  CAS  PubMed  Google Scholar 

  37. Repetto G, del Peso A, Zurita JL (2008) Neutral red uptake assay for the estimation of cell viability/cytotoxicity. Nat Protoc 3(7):1125–1131. doi:10.1038/nprot.2008.75

    Article  CAS  PubMed  Google Scholar 

  38. Tsigelny IF, Crews L, Desplats P, Shaked GM, Sharikov Y, Mizuno H, Spencer B, Rockenstein E et al (2008) Mechanisms of hybrid oligomer formation in the pathogenesis of combined Alzheimer’s and Parkinson’s diseases. PLoS One 3(9):e3135. doi:10.1371/journal.pone.0003135

    Article  PubMed  PubMed Central  Google Scholar 

  39. Baba M, Nakajo S, Tu PH, Tomita T, Nakaya K, Lee VM, Trojanowski JQ, Iwatsubo T (1998) Aggregation of alpha-synuclein in Lewy bodies of sporadic Parkinson’s disease and dementia with Lewy bodies. Am J Pathol 152(4):879–884

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Fauvet B, Mbefo MK, Fares MB, Desobry C, Michael S, Ardah MT, Tsika E, Coune P et al (2012) Alpha-synuclein in central nervous system and from erythrocytes, mammalian cells, and Escherichia coli exists predominantly as disordered monomer. J Biol Chem 287(19):15345–15364. doi:10.1074/jbc.M111.318949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Esteves AR, Arduino DM, Swerdlow RH, Oliveira CR, Cardoso SM (2009) Oxidative stress involvement in alpha-synuclein oligomerization in Parkinson’s disease cybrids. Antioxid Redox Signal 11(3):439–448. doi:10.1089/ars.2008.2247

    Article  CAS  PubMed  Google Scholar 

  42. Harman D (1972) The biologic clock: the mitochondria? J Am Geriatr Soc 20(4):145–147

    Article  CAS  PubMed  Google Scholar 

  43. Farlow J, Pankratz ND, Wojcieszek J, Foroud T (1993) Parkinson disease overview. In: Pagon RA, Adam MP, Ardinger HH et al. (eds) GeneReviews(R), Seattle (WA)

  44. Geisler S, Holmstrom KM, Skujat D, Fiesel FC, Rothfuss OC, Kahle PJ, Springer W (2010) PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol 12(2):119–131. doi:10.1038/ncb2012

    Article  CAS  PubMed  Google Scholar 

  45. Narendra D, Tanaka A, Suen DF, Youle RJ (2008) Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol 183(5):795–803. doi:10.1083/jcb.200809125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Dettmer U, Newman AJ, Luth ES, Bartels T, Selkoe D (2013) In vivo cross-linking reveals principally oligomeric forms of alpha-synuclein and beta-synuclein in neurons and non-neural cells. J Biol Chem 288(9):6371–6385. doi:10.1074/jbc.M112.403311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Souza JM, Giasson BI, Chen Q, Lee VM, Ischiropoulos H (2000) Dityrosine cross-linking promotes formation of stable alpha-synuclein polymers. Implication of nitrative and oxidative stress in the pathogenesis of neurodegenerative synucleinopathies. J Biol Chem 275(24):18344–18349. doi:10.1074/jbc.M000206200

    Article  CAS  PubMed  Google Scholar 

  48. Chen L, Feany MB (2005) Alpha-synuclein phosphorylation controls neurotoxicity and inclusion formation in a Drosophila model of Parkinson disease. Nat Neurosci 8(5):657–663. doi:10.1038/nn1443

    Article  CAS  PubMed  Google Scholar 

  49. Kuwahara T, Tonegawa R, Ito G, Mitani S, Iwatsubo T (2012) Phosphorylation of alpha-synuclein protein at Ser-129 reduces neuronal dysfunction by lowering its membrane binding property in Caenorhabditis elegans. J Biol Chem 287(10):7098–7109. doi:10.1074/jbc.M111.237131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Oueslati A, Paleologou KE, Schneider BL, Aebischer P, Lashuel HA (2012) Mimicking phosphorylation at serine 87 inhibits the aggregation of human alpha-synuclein and protects against its toxicity in a rat model of Parkinson’s disease. The Journal of Neuroscience : the Official Journal of the Society for Neuroscience 32(5):1536–1544. doi:10.1523/jneurosci.3784-11.2012

    Article  CAS  Google Scholar 

  51. Azeredo da Silveira S, Schneider BL, Cifuentes-Diaz C, Sage D, Abbas-Terki T, Iwatsubo T, Unser M, Aebischer P (2009) Phosphorylation does not prompt, nor prevent, the formation of alpha-synuclein toxic species in a rat model of Parkinson’s disease. Hum Mol Genet 18(5):872–887. doi:10.1093/hmg/ddn417

    CAS  PubMed  Google Scholar 

  52. Siddiqui A, Chinta SJ, Mallajosyula JK, Rajagopolan S, Hanson I, Rane A, Melov S, Andersen JK (2012) Selective binding of nuclear alpha-synuclein to the PGC1alpha promoter under conditions of oxidative stress may contribute to losses in mitochondrial function: implications for Parkinson’s disease. Free Radic Biol Med 53(4):993–1003. doi:10.1016/j.freeradbiomed.2012.05.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Boassa D, Berlanga ML, Yang MA, Terada M, Hu J, Bushong EA, Hwang M, Masliah E et al (2013) Mapping the subcellular distribution of alpha-synuclein in neurons using genetically encoded probes for correlated light and electron microscopy: implications for Parkinson’s disease pathogenesis. The Journal of Neuroscience : the Official Journal of the Society for Neuroscience 33(6):2605–2615. doi:10.1523/jneurosci.2898-12.2013

    Article  CAS  Google Scholar 

  54. Dedmon MM, Lindorff-Larsen K, Christodoulou J, Vendruscolo M, Dobson CM (2005) Mapping long-range interactions in alpha-synuclein using spin-label NMR and ensemble molecular dynamics simulations. J Am Chem Soc 127(2):476–477. doi:10.1021/ja044834j

    Article  CAS  PubMed  Google Scholar 

  55. Pham CL, Kirby N, Wood K, Ryan T, Roberts B, Sokolova A, Barnham KJ, Masters CL et al (2014) Guanidine hydrochloride denaturation of dopamine-induced alpha-synuclein oligomers: a small-angle X-ray scattering study. Proteins 82(1):10–21. doi:10.1002/prot.24332

    Article  CAS  PubMed  Google Scholar 

  56. Monti B, Gatta V, Piretti F, Raffaelli SS, Virgili M, Contestabile A (2010) Valproic acid is neuroprotective in the rotenone rat model of Parkinson’s disease: involvement of alpha-synuclein. Neurotox Res 17(2):130–141. doi:10.1007/s12640-009-9090-5

    Article  CAS  PubMed  Google Scholar 

  57. Braak H, Del Tredici K, Rub U, de Vos RA, Jansen Steur EN, Braak E (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24(2):197–211

    Article  PubMed  Google Scholar 

  58. Visanji NP, Brooks PL, Hazrati LN, Lang AE (2013) The prion hypothesis in Parkinson’s disease: Braak to the future. Acta Neuropathologica Communications 1:2. doi:10.1186/2051-5960-1-2

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was funded by The Norwegian Research Council, The Western Norway Regional Health Authority, St. John’s University, The Norwegian Centre for Movement Disorders, The Norwegian Parkinson’s Association, and National Institutes of Health Shared Instrumentation Grant S10 RR027990 and P30 NS050276 from NINDS. We thank Dr. Lashuel for providing p-S129 and p-S87 monoclonal antibodies and for purified a-syn. We thank the New York Brain Bank for providing frozen cerebellum from post-mortem PD patients.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon G. Møller.

Electronic Supplementary Material

Figure S1

(TIFF 1 mb)

Table S1

(DOCX 61 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdullah, R., Patil, K.S., Rosen, B. et al. Subcellular Parkinson’s Disease-Specific Alpha-Synuclein Species Show Altered Behavior in Neurodegeneration. Mol Neurobiol 54, 7639–7655 (2017). https://doi.org/10.1007/s12035-016-0266-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-0266-8

Keywords

Navigation