Skip to main content

RCSN Cell System for Identifying Dopaminergic Neurotoxicity

  • Living reference work entry
  • First Online:
Handbook of Neurotoxicity

Abstract

Dopaminergic toxicity represents a potential mechanism underlying Parkinson’s disease (PD) neuropathology. Nevertheless, the study of such a mechanism is hampered by the lack of permanent and stable in vitro models that bear relevant cellular traits, namely, neuronal dopaminergic function. Although various permanent cell lines exhibiting variable dopaminergic properties do exist, such properties are not necessarily stable and may require the application of complex and costly differentiation protocols for induction. The latter is particularly true when inducing in vitro differentiation from more undifferentiated tissue, such as stem cells. Also, cell lines may lose viability or eventually undergo permanent differentiation. This chapter discusses a permanently growing cell line, named RCSN-3, which was established from the substantia nigra of an adult Fisher 344 rat. The cell line retains dopaminergic traits, including dopamine production and secretion, and the presence of catecholamine reuptake transporters. Notably, these properties have remained expressed in RCSN-3 cells for decades. This chapter also addresses the contribution of RCSN-3 to dopaminergic-mediated toxic phenomena, in particular, and to the identification of potential therapeutical targets in dopaminergic neurons. Finally, RCSN-3 cells are also presented as a model for cell transplant therapy, in animal models of PD, and their contribution in this field is discussed in relation to more recently available cell sources, such as stem cells and induced pluripotent stem cells (iPSCs).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

GABA:

Gamma-aminobutyric acid

HPLC:

High-performance liquid chromatography

iPSCs:

Induced pluripotent stem cells

LRRK2:

Leucine-rich repeat kinase 2

MAP-2:

Microtubule associated protein-2

MPTP:

1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine

NSE:

Neuron specific enolase

PD:

Parkinson’s disease

PINK1:

PTEN-induced putative kinase 1

PTEN:

Phosphatase and tensin homolog deleted on chromosome 10

ROS:

Reactive oxygen species

SN:

Substantia nigra

SNCA:

Alpha-synuclein gene

TH:

Tyrosine hydroxilase

MPP+:

1-Methyl-4-phenylpyridinium.

DAT:

Dopamine transporter

NET:

Norepinephrine transporter

VMAT-2:

Vesicular monoamine transporter-2

References

  • Aguirre, P., Urrutia, P., Tapia, V., Villa, M., Paris, I., Segura-Aguilar, J., & Núñez, M. T. (2012). The dopamine metabolite aminochrome inhibits mitochondrial complex I and modifies the expression of iron transporters DMT1 and FPN1. Biometals, 25(4), 795–803.

    Google Scholar 

  • Allen, D. D., Caviedes, R., Cárdenas, A. M., Shimahara, T., Segura-Aguilar, J., & Caviedes, P. (2005). Cell lines as in vitro models for drug screening and toxicity studies. Drug Development and Industrial Pharmacy, 31(8), 747–758.

    Article  CAS  Google Scholar 

  • Arriagada, C., Salazar, J., Shimahara, T., Caviedes, R., & Caviedes, P. (2002). An immortalized neuronal cell line derived from the substantia nigra of an adult rat: Application to cell transplant therapy. In E. Ronken & G. van Scharrenburg (Eds.), Parkinson’s disease (pp. 120–132). IOS Press. ISBN 1 58603 207 0.

    Google Scholar 

  • Arriagada, C., Paris, I., Sánchez de las Matas, M. J., Martínez-Alvarado, P., Graumann, R., Cárdenas, S., Castañeda, P., Pérez-Pastene, C., Olea Azar, C., Couve, E., Herrero, M. T., Caviedes, P., & Segura-Aguilar, J. (2004). Neurotoxic effects of leukoaminochrome o-semiquinone radical on RCSN-3 cells: Mitochondrial damage, necrosis, and hydroxyl radical formation. Neurobiology of Disease, 16, 468–477.

    Article  CAS  PubMed  Google Scholar 

  • Blandini, F., & Armentero, M. T. (2012). Animal models of Parkinson’s disease. The FEBS Journal, 279(7), 1156–1166.

    Article  CAS  PubMed  Google Scholar 

  • Bonaventura, G., Iemmolo, R., Attaguile, G. A., La Cognata, V., Sabrina Pistone, B., Raudino, G., D’Agata, V., Cantarella, G., Barcellona, M. L., & Cavallaro, S. (2021). iPSCs: A preclinical drug research tool for neurological disorders. International Journal of Molecular Sciences, 22(9), 4596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borlongan, C. V., & Sanberg, P. R. (2002). Neural transplantation for treatment of Parkinson’s disease. Drug Discovery Today, 7(12), 674–682.

    Article  CAS  PubMed  Google Scholar 

  • Cárdenas, A. M., Allen, D. D., Arriagada, C., Olivares, A., Bennett, L. B., Caviedes, R., Dagnino-Subiabre, A., Mendoza, I. E., Segura-Aguilar, J., Rapoport, S. I., & Caviedes, P. (2002). Establishment and characterization of immortalized neuronal cell lines derived from the spinal cord of normal and trisomy 16 fetal mice, an animal model of Down Syndrome. Journal of Neuroscience Research, 68(2), 46–58.

    Article  PubMed  CAS  Google Scholar 

  • Caviedes, P., Olivares, E., Salas, K., Caviedes, R., & Jaimovich, E. (1993). Calcium fluxes, ion currents and dihydropyridine receptors in a newly established cell line from rat heart muscle. Journal of Molecular and Cellular Cardiology, 25, 829–845.

    Article  CAS  PubMed  Google Scholar 

  • Caviedes, R., Caviedes, P., Liberona, J. L., & Jaimovich, E. (1994). Ion currents in a skeletal muscle cell line from a Duchenne muscular dystrophy patient. Muscle & Nerve, 17, 1021–1028.

    Article  CAS  Google Scholar 

  • Caviedes, P., Caviedes, R., Freeman, T. B., Asenjo, J., Andrews, B., Sepúlveda, D., Arriagada, C., & Salazar Rivera, J. (2012). Materials and methods for regulating process formation in cell culture. US Patent No 8,252,279.

    Google Scholar 

  • Choi-Lundberg, D. L., Lin, Q., Chang, Y. N., Chiang, Y. L., Hay, C. M., Mohajeri, H., Davidson, B. L., & Bohn, M. C. (1997). Dopaminergic neurons protected from degeneration by GDNF gene therapy. Science, 275, 838–841.

    Article  CAS  PubMed  Google Scholar 

  • Chun, H. S., Gibson, G. E., DeGiorgio, L. A., Zhang, H., Kidd, V. J., & Son, J. H. (2001). Dopaminergic cell death induced by MPP+, oxidant and specific neurotoxicants shares the common molecular mechanism. Journal of Neurochemistry, 76, 1010–1021.

    Article  CAS  PubMed  Google Scholar 

  • Copeland, R. L., Jr., Leggett, Y. A., Kanaan, Y. M., Taylor, R. E., & Tizabi, Y. (2005). Neuroprotective effects of nicotine against salsolinol- induced cytotoxicity: Implications for Parkinson’s disease. Neurotoxicity Research, 8, 289–293.

    Article  CAS  PubMed  Google Scholar 

  • Deacon, T., Schumacher, J., Dinsmore, J., Thomas, C., Palmer, P., Kott, S., Edge, A., Penney, D., Kassissieh, S., Dempsey, P., & Isacson, O. (1997). Histological evidence of fetal pig neural cell survival after transplantation into a patient with Parkinson’s disease. Nature Medicine, 3, 350–353.

    Article  CAS  PubMed  Google Scholar 

  • Devine, M. J., Ryten, M., Vodicka, P., Thomson, A. J., Burdon, T., Houlden, H., Cavaleri, F., Nagano, M., Drummond, N. J., Taanman, J. W., Schapira, A. H., Gwinn, K., Hardy, J., Lewis, P. A., & Kunath, T. (2011). Parkinson’s disease induced pluripotent stem cells with triplication of the α-synuclein locus. Nature Communications, 2, 440.

    Article  PubMed  CAS  Google Scholar 

  • Drolet, R. E., Sanders, J. M., & Kern, J. T. (2011). Leucine-rich repeat kinase 2 (LRRK2) cellular biology: A review of recent advances in identifying physiological substrates and cellular functions.J. Neurogenetics, 25(4), 140–151.

    Article  CAS  Google Scholar 

  • Frederiksen, K., Thorpe, A., Richards, S. J., Waters, J., Dunnett, S. B., & Sandberg, B. E. (1996). Immortalized neural cells from trisomy 16 mice as models for Alzheimer’s disease. Annals of the New York Academy of Sciences, 777, 415–420.

    Article  CAS  PubMed  Google Scholar 

  • Freeman, T. B., Caviedes, P., & Caviedes, R. (2012). Conditioned medium and proliferated cell lines produced therefrom. Pub US 2008/0175828 A1. US Patent No US 8.337.829 B2.

    Google Scholar 

  • Freshney, R. I. (2016). Culture of specific cell types. In R. I. Freshney (Ed.), Culture of animal cells: A manual of basic technique and specialized applications (7th ed., pp. 531–571). Wiley-Liss.

    Google Scholar 

  • Fuentes-Bravo, P., Paris, I., Nassif, C. M., Caviedes, P., & Segura-Aguilar, J. (2007). Inhibition of VMAT-2 and DT diaphorase induce cell death in substantia nigra derived cell line- an experimental cell model for dopamine toxicity studies. Chemical Research in Toxicology, 20(5), 776–783.

    Article  CAS  Google Scholar 

  • Greene, L. A., & Tischler, A. S. (1976 Jul). 1976. Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proceedings of the National Academy of Sciences of the United States of America, 73(7), 2424–2428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herrera, A., Muñoz, P., Steinbusch, H. W. M., & Segura-Aguilar, J. (2017). Are dopamine oxidation metabolites involved in the loss of dopaminergic neurons in the nigrostriatal system in Parkinson’s disease? ACS Chemical Neuroscience, 8, 702–711.

    Article  CAS  PubMed  Google Scholar 

  • Jankovic, J. (2008). Parkinson’s disease: Clinical features and diagnosis. Journal of Neurology, Neurosurgery, and Psychiatry, 79(4), 368–376.

    Article  CAS  PubMed  Google Scholar 

  • Lesage, S., & Brice, A. (2009). Parkinson’s disease: From monogenic forms to genetic susceptibility factors. Human Molecular Genetics, 18(R1), R48–R59.

    Article  CAS  PubMed  Google Scholar 

  • Liberona, J. L., Caviedes, P., Tascón, S., Giglio, J. R., Sampaio, S. V., Hidalgo, J., Caviedes, R., & Jaimovich, E. (1997). Expression of ion channels during differentiation of a human skeletal muscle cell line. The Journal of Muscle Research and Cell Motility, 18(5), 586–598.

    Article  Google Scholar 

  • Liu, G., David, B. T., Trawczynski, M., & Fessler, R. G. (2020). Advances in pluripotent stem cells: History, mechanisms, technologies, and applications. Stem Cell Reviews and Reports, 16, 3–32.

    Article  PubMed  Google Scholar 

  • Lozano, A. M., Lang, A. E., Hutchison, W. D., & Dostrovsky, J. O. (1998). New developments in understanding the etiology of Parkinson’s disease and in its treatment. Current Opinion in Neurobiology, 8, 783–790.

    Article  CAS  PubMed  Google Scholar 

  • Lozano, J., Muñoz, P., Nore, B. F., Ledoux, S., & Segura-Aguilar, J. (2010). Stable expression of short interfering RNA for DT-diaphorase induces neurotoxicity. Chemical Research in Toxicology, 23(9), 1492–1496.

    Article  CAS  PubMed  Google Scholar 

  • Luo, Y., Umegaki, H., Wang, X., Abe, R., & Roth, G. S. (1998). Dopamine induces apoptosis through an oxidation-involved SAPK/JNK activation pathway. The Journal of Biological Chemistry, 273(6), 3756–3764.

    Article  CAS  PubMed  Google Scholar 

  • Marchionni, M., Goodearl, A. D., Chen, M. S., Bermingham-McDonough, O., Kirk, C., Hendricks, M., Danehy, F., Misunmi, D., Sudhalter, J., Kobayashi, K., Wroblewski, D., Lynch, C., Baldassare, M., Hiles, I., Davis, J. B., Hsuan, J. J., Totty, N. F., Otsu, M., McBurney, R., … Geynne, D. (1993). Glial growth factors are alternatively spliced erbB2 ligands expressed in the nervous system. Nature, 254, 515–516.

    Google Scholar 

  • Martinez-Alvarado, P., Dagnino-Subiabre, A., Paris, I., Metodiewa, D., Welch, C. J., Olea-Azar, C., Caviedes, P., Caviedes, R., & Segura-Aguilar. (2001). Possible role of salsolinol quinone methide in the decrease of RCSN-3 cell survival. Journal of Biochemical and Biophysical Research Communications, 283(5), 1069–1077.

    Google Scholar 

  • Martínez-Morales, P. L., & Liste, I. (2012). Stem cells as in vitro model of Parkinson’s disease. Stem Cells International, 2012, 980941. https://doi.org/10.1155/2012/980941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mazzulli, J. R., Zunke, F., Tsunemi, T., Toker, N. J., Jeon, S., Burbulla, L. F., Patnaik, S., Sidransky, E., Marugan, J. J., & Sue, C. M. (2016). Activation of β-glucocerebrosidase reduces pathological α-synuclein and restores lysosomal function in Parkinson’s patient midbrain neurons. The Journal of Neuroscience, 36, 7693–7706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meléndez, C., Muñoz, P., & Segura-Aguilar, J. (2019). DT-diaphorase prevents aminochrome-induced lysosome dysfunction in SH-SY5Y cells. Neurotoxicity Research, 35, 255–259.

    Article  PubMed  CAS  Google Scholar 

  • Morizane, A., & Takahashi, J. (2021). Evading the immune system: Immune modulation and immune matching in cell replacement therapies for Parkinson’s disease. Journal of Parkinson’s Disease. https://doi.org/10.3233/JPD-212608

  • Muñoz, P., & Segura-Aguilar, J. (2017). DT-diaphorase protects against autophagy induced by aminochrome-dependent alpha-synuclein oligomers. Neurotoxicity Research, 32, 362–367.

    Article  PubMed  CAS  Google Scholar 

  • Muñoz, P., Paris, I., Sanders, L. H., Greenamyre, J. T., & Segura-Aguilar, J. (2012a). Overexpression of VMAT-2 and DT-diaphorase protects substantia nigra-derived cells against aminochrome neurotoxicity. Biochimica et Biophysica Acta, 1822, 1125–1136.

    Article  PubMed  CAS  Google Scholar 

  • Muñoz, P., Huenchuguala, S., Paris, I., Cuevas, C., Villa, M., Caviedes, P., Segura-Aguilar, J., & Tizabi, Y. (2012b). Protective effects of nicotine against aminochrome-induced toxicity in substantia nigra derived cells: Implications for Parkinson’s disease. Neurotoxicity Research, 22(2), 177–180.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Muñoz, P., Cardenas, S., Huenchuguala, S., Briceño, A., Couve, E., Paris, I., & Segura-Aguilar, J. (2013). DT-diaphorase prevents aminochrome-induced alpha-synuclein oligomer formation and neurotoxicity. Toxicological Sciences, 145(1), 37–47.

    Article  CAS  Google Scholar 

  • Muñoz, P., Cardenas, S., Huenchuguala, S., Briceño, A., Couve, E., Paris, I., & Segura-Aguilar, J. (2015). DT-diaphorase prevents aminochrome-induced alpha-synuclein oligomer formation and neurotoxicity. Toxicological Sciences, 145(1), 37–47.

    Google Scholar 

  • Lonneke, & Breteler. (2006). Epidemiology of Parkinson’s disease. Lancet Neurology, 5(6), 525–535.

    Google Scholar 

  • Olanow, C. W., Goetz, C. G., Kordower, J. H., Stoessl, A. J., Sossi, V., Brin, M. F., Shannon, K. M., Nauert, G. M., Perl, D. P., Godbold, J., & Freeman, T. B. (2003). A double-blind controlled trial of bilateral fetal nigral transplantation in Parkinson’s disease. Annals of Neurology, 54(3), 403–414.

    Article  PubMed  Google Scholar 

  • Oyarce, A. M., & Fleming, P. J. (1991). Multiple forms of human dopamine beta-hydroxylase in SH-SY5Y neuroblastoma cells. Archives of Biochemistry and Biophysics, 290(2), 503–510.

    Article  CAS  PubMed  Google Scholar 

  • Paris, I., Martinez-Alvarado, P., Perez-Pastene, C., Vieira, M. N. N., Olea-Azar, C., Raisman-Vozari, R., Cardenas, S., Graumann, R., Caviedes, P., & Segura-Aguilar, J. (2005). Monoamine transporter inhibitors and norepinephrine reduce dopamine-dependent iron toxicity in cells derived from the substantia nigra. Journal of Neurochemistry, 92(5), 1021–1032.

    Article  CAS  PubMed  Google Scholar 

  • Paris, I., Perez-Pastene, C., Cardenas, S., Iturriaga-Vasquez, P., Muñoz, P., Couve, E., Caviedes, P., & Segura-Aguilar, J. (2010). Aminochrome induces disruption of actin, alpha-, and beta-tubulin cytoskeleton networks in substantia-nigra-derived cell line. Neurotoxicity Research, 18(1), 82–92.

    Article  PubMed  Google Scholar 

  • Park, I. H., Arora, N., Huo, H., Maherali, N., Ahfeldt, T., Shimamura, A., Lensch, M. W., Cowan, C., Hochedlinger, K., & Daley, G. Q. (2008). Disease-specific induced pluripotent stem cells. Cell, 134(5), 877–886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paul, G., Christophersen, N. S., Raymon, H., Kiaer, C., Smith, R., & Brundin, P. (2007). Tyrosine hydroxylase expression is unstable in a human immortalized mesencephalic cell line–studies in vitro and after intracerebral grafting in vivo. Molecular and Cellular Neurosciences, 34(3), 390–399.

    Article  CAS  PubMed  Google Scholar 

  • Poncelet, A. J., Denis, D., & Gianello, P. (2009). Cellular xenotransplantation. Current Opinion Organ Transplant, 14(2), 168–174.

    Google Scholar 

  • Segura-Aguilar, J., & Paris, I. (2014). Mechanisms of dopamine oxidation and Parkinson’s disease. In R. Kostrzewa (Ed.), Handbook of neurotoxicity. Springer. https://doi.org/10.1007/978-1-4614-5836-4_16

    Chapter  Google Scholar 

  • Segura-Aguilar, J., Paris, I., Muñoz, P., Ferrari, E., Zecca, L., & Zucca, F. A. (2014). Protective and toxic roles of dopamine in Parkinson’s disease. Journal of Neurochemistry, 129(6), 898–915. https://doi.org/10.1111/jnc.12686. Epub 2014 Mar 18.

    Article  CAS  PubMed  Google Scholar 

  • Sian, J., Youdim, M. B. H., Riederer, P., & Gerlach, M. (1999). Neurotransmitters and disorders of the basal ganglia. In G. J. Siegel (Ed.), Basic neurochemistry: Molecular, cellular and medical aspects (6th ed.). Philadelphia: Lippincott-Raven. ISBN-10: 0-397-51820-X.

    Google Scholar 

  • Soldner, F., Hockemeyer, D., Beard, C., Gao, Q., Bell, G. W., Cook, E. G., Hargus, G., Blak, A., Cooper, O., Mitalipova, M., Isacson, O., & Jaenisch, R. (2009). Parkinson’s disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell, 136(5), 964–977.

    Google Scholar 

  • Swistowski, A., Peng, J., Liu, Q., Mali, P., Rao, M. S., Cheng, L., & Zenga, X. (2010). Efficient generation of functional dopaminergic neurons from human induced pluripotent stem cells under defined conditions. Stem Cells, 28(10), 1893–1904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., & Yamanaka, S. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131, 861–872.

    Article  CAS  PubMed  Google Scholar 

  • Takayama, H., Ray, J., Raymon, H. K., Baird, A., Hogg, J., Fisher, L. J., & Gage, F. H. (1995). Basic fibroblast growth factor increases dopaminergic graft survival and function in a rat model of Parkinson’s disease. Nature Medicine, 1, 53–58.

    Article  CAS  PubMed  Google Scholar 

  • Tanner, C. M., Ross, G. W., Jewell, S. A., Hauser, R. A., Jankovic, J., Factor, S. A., Bressman, S., Deligtisch, A., Marras, C., Lyons, K. E., Bhudhikanok, G. S., Roucoux, D. F., Meng, C., Abbott, R. D., & Langston, J. W. (2009). Occupation and risk of parkinsonism: A multicenter case-control study. Archives of Neurology, 66(9), 1106–1113.

    Article  PubMed  Google Scholar 

  • Thomas, C., Mackey, M. M., Diaz, A. A., & Cox, D. P. (2009). Hydroxyl radical is produced via the Fenton reaction in submitochondrial particles under oxidative stress: Implications for diseases associated with iron accumulation. Redox Report, 14(3), 102–108.

    Article  CAS  PubMed  Google Scholar 

  • Villa, M., Muñoz, P., Ahumada-Castro, U., Paris, I., Jiménez, A., Martínez, I., Sevilla, F., & Segura-Aguilar, J. (2013). One-electron reduction of 6-hydroxydopamine quinone is essential in 6-hydroxydopamine neurotoxicity. Neurotoxicity Research, 24, 94–101.

    Article  CAS  PubMed  Google Scholar 

  • Wernig, M., Zhao, J. P., Pruszak, J., Hedlund, E., Fu, D., Soldner, F., Broccoli, V., Constantine-Paton, M., Isacson, O., & Jaenisch, R. (2008). Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson’s disease. Proceedings of the National Academy of Sciences of the United States of America, 105(15), 5856–5861.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Conflict of Interest

Dr. Pablo Caviedes declares intellectual property protection on the RCSN-3 cell line (Freeman et al., 2012) and the cell culture clustering protocol depicted in Fig. 2 (Caviedes et al., 2012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo Caviedes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Caviedes, P., Caviedes, R., Segura-Aguilar, J. (2021). RCSN Cell System for Identifying Dopaminergic Neurotoxicity. In: Kostrzewa, R.M. (eds) Handbook of Neurotoxicity. Springer, Cham. https://doi.org/10.1007/978-3-030-71519-9_56-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-71519-9_56-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-71519-9

  • Online ISBN: 978-3-030-71519-9

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics