Skip to main content
Log in

Neuromelanin and its interaction with iron as a potential risk factor for dopaminergic neurodegeneration underlying Parkinson's disease

  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Neuromelanin (NM) is a granular, dark brown pigment produced in some but not all of the dopaminergic neurons of the human substantia nigra (SN). In Parkinson's disease (PD) the pigmented dopaminergic neurons of the SN degenerate, suggesting that this process is related to the presence of NM. As yet it is unknown whether NM in the parkinsonian brain differs from that found in healthy tissue and thus may fulfil a different role within this tissue. The function of NM within the pigmented neurons is unknown but other melanins are believed to play a protective role via attenuation of free radical damage. Experimental evidence suggests that NM may also exhibit this characteristic, possibly by direct inactivation of free radical species or via its ability to chelate transition metals, such as iron. NM has the ability to bind a variety of metals, seven per cent of isolated NM is reported to consist of Fe, Cu, Zn and Cr. Iron is of particular interest as this metal is highly concentrated within the SN. Up to 20 per cent of the total iron contained in the SN from normal subjects is bound within NM. Further, it was demonstrated that NM contains a protein component and that iron is bound to NM in the ferric form. Increased tissue iron found in the parkinsonian SN may saturate iron-chelating sites on NM, and a looser association between iron and NM may result in an increased, rather than decreased, production of free radical species. It is hypothesized that this redox-active iron could be released and involved in a Fenton-like reaction leading to an increased production of oxidative radicals. The resultant radical-mediated cytotoxicity may contribute to cellular damage observed in PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aimi Y and PL McGeer (1996) Lack of toxicity of human neuromelanin to rat brain dopaminergic neurons.Parkinson. Relat. Disord. 2, 69–74.

    Article  CAS  Google Scholar 

  • Aime S, M Fasano, B Bergamasco, L Lopiano. and G Quattrocolo (1996) Nuclear magnetic resonance spectroscopy characterization and iron content determination of human mesencephalic neuromelanin.Adv. Neurol. 69, 263–270.

    PubMed  CAS  Google Scholar 

  • Aime S, B Bergamasco, D Biglino, G Digilio, M Fasano, E Giamello and L Lopiano (1997) EPR investigations of the iron domain in neuromelanin.Biochem. Biophys. Acta 1361, 49–58.

    PubMed  CAS  Google Scholar 

  • Aime S, B Bergamasco, M Casu, G Digilio, M Fasano, S Giraudo and L Lopiano (2000) Isolation and13C-NMR characterization of an insoluble proteinaceous fraction from substantia nigra of patients with Parkinson's disease.Mov. Disord. 15, 977–981.

    Article  PubMed  CAS  Google Scholar 

  • Banati RB, SE Daniel and SB Blunt (1998) Glial pathology but absence of apoptotic nigral neurons in long-standing Parkinson's disease.Mov. Disord. 13, 221–227.

    Article  PubMed  CAS  Google Scholar 

  • Bartzokis G and T Tishler (2000) MRI evaluation of basal ganglia ferritin iron and neurotoxicity in Alzheimer's and Huntington's disease.Cell. Mol. Biol. 46, 821–833.

    PubMed  CAS  Google Scholar 

  • Ben-Shachar D and MBH Youdim (1990) Selectivity of melanized nigra-striatal dopamine neurons to degeneration in Parkinson's disease may depend on iron-melanin interaction.J. Neural Transm. (Suppl.) 29, 251–258.

    CAS  Google Scholar 

  • Ben-Shachar D, P Riederer and MBH Youdim (1991) Iron-melanin interaction and lipid peroxidation: implications for Parkinson's disease.J. Neurochem. 57, 1609–1614.

    Article  PubMed  CAS  Google Scholar 

  • Berg D, M Gerlach, MBH Youdim, KL Double, L Zecca, P Riederer and G Becker (2001) Brain iron pathways and their relevance to Parkinson's disease.J. Neurochem. 79, 225–236.

    Article  PubMed  CAS  Google Scholar 

  • Berg D, W Roggendorf, U Schröder, R Klein, T Tatschner, P Benz, O Tucha, M Preier, KW Lange, K Reiners, M Gerlach and G Becker (2002) Echogenicity of the substantia nigra. Association with increased iron content and marker for susceptibility to nigrostriatal injury.Arch. Neurol. 59, 999–1005.

    Article  PubMed  Google Scholar 

  • Bernheimer H, W Birkmayer, O Hornykiewicz, K Jellinger and F Seitelberger (1973) Brain dopamine and the syndromes of Parkinson and Huntington: clinical, morphological and neurochemical correlations.J. Neurol. Sci. 20, 415–455.

    Article  PubMed  CAS  Google Scholar 

  • Braak H, E Braak, D Yilmazer, C Schultz, R De Vos and E Jansen (1995) Nigral and extanigral pathology in Parkinson's disease.J. Neural Transm. (Suppl.) 46, 15–32.

    CAS  Google Scholar 

  • Castellani R, S Siedlak, G Perry and M Smith (2000) Sequestration of iron by Lewy bodies in Parkinson's disease.Acta Neuropathol. 100, 111–114.

    Article  PubMed  CAS  Google Scholar 

  • Connor JR, BS Snyder, JL Beard, RE Fine and EJ Mufson (1992) Regional distribution of iron and iron-regulatory proteins in the brain in aging and Alzheimer's disease.J. Neurosci. Res. 31, 327–335.

    Article  PubMed  CAS  Google Scholar 

  • Connor JR, BS Snyder, P Arosio, DA Loeffler and P LeWitt (1995) A quantitative analysis of isoferritins in select regions of aged, parkisonian and Alzheimer's diseased brains.J. Neurochem. 65, 717–724.

    PubMed  CAS  Google Scholar 

  • D'Amato RJ, ZP Lipman and SH Snyder (1986) Selectivity of the parkinsonian neurotoxin MPTP: toxic metabolite MPP binds to neuromelanin.Science 231, 987–989.

    Article  PubMed  Google Scholar 

  • Damier P, E Hirsch, F Javoy-Agid, P Zhang and Y Agid (1993) Glutathione peroxidase, glial cells and Parkinson's disease.Neuroscience 52, 1–6.

    Article  PubMed  CAS  Google Scholar 

  • D'Azur V (1786) Traitè d'anatomie et de physiologie. Cited by C.D. Marsden (1969) Brain Melanin, In: Wolman M, Ed.,Pigments in Pathology (Academic Press, New York).

    Google Scholar 

  • Dexter DT, FR Wells, AJ Lees, F Agid, Y Agid, P Jenner and CD Marsden (1989) Increased nigral iron content and alterations in other metal ions occurring in brain in Parkinson's disease.J. Neurochem. 52, 1830–1836.

    Article  PubMed  CAS  Google Scholar 

  • Dexter, DT, A Carayon, F Javoy-Agid, Y Agid, FR Wells, SE Daniel, A Lees, P Jenner and CD Marsden (1991) Alterations in the levels of iron, ferritin and other trace metals in Parkinson's disease and other neurodegenerative diseases affecting the basal ganglia.Brain 114, 1953–1975.

    Article  PubMed  Google Scholar 

  • Dexter D, J Sian, P Jenner and CD Marsden (1993) Implications of alterations in trace element levels in brain in Parkinson's disease and ther neurological disorders affecting the basal ganglia.Adv. Neurol. 60, 273–281.

    PubMed  CAS  Google Scholar 

  • Dexter D, J Sian, S Rose, J Hindmarsh, V Mann, J Cooper, F Wells, S Daniel, A Lees and A Schapira (1994) Indices of oxidative stress and mitochondrial function in indiviuals with incidental Lewy body disease.Ann. Neurol. 35, 38–44.

    Article  PubMed  CAS  Google Scholar 

  • Double KL, M Maywald, M Schmittel, P Riederer and M Gerlach (1998)In vitro studies of ferritin iron release and neurotoxicity.J. Neurochem. 70, 2492–2499.

    PubMed  CAS  Google Scholar 

  • Double K, P Riederer and M Gerlach (1999) The significance of neuromelanin in Parkinson's disease.Drug News Develop. 12, 333–340.

    CAS  Google Scholar 

  • Double KL, M Gerlach, MBH Youdim and P Riederer (2000a) Impaired iron homeostatsis in Parkinson's disease.J. Neural Transm. (Suppl.) 60, 37–58.

    Google Scholar 

  • Double K, L Zecca, P Costo, M Mauer, C Griesinger, S Ito, D Ben-Shachar, G Bringmann, RG Fariello, P Riederer and M Gerlach (2000b)_Structural characteristics of human substantia nigra neuromelanin and synthetic dopamine melanins.J. Neurochem. 75, 2583–2589.

    Article  PubMed  CAS  Google Scholar 

  • Dryhurst G, X-M Shen, H Li, Z Yang, J Han and F-C Cheng (2000) Potential roles of accelerated dopamine oxidation, altered glutathione metabolism, 5-S-cysteinyl-dopamine and its oxidative metabolism in the pathogenesis of Parkinson's disease. In: Storch A and MA Collins, Eds.,Neurotoxic Factors in Parkinson's Disease and Related Disorder (Kluwer Academic/Plenum Publishers, New York), pp 181–209.

    Google Scholar 

  • Ehringer H and O Hornykiewicz (1960) Verteilung von Noradrenalin und Dopamin (3-Hydroxytyramin) im Gehirn des Menschen und ihr Verhalten bei Erkrankungen des extrapyramidalen Systems.Wien. Klin. Wschr. 38, 1236–1239.

    Article  CAS  Google Scholar 

  • Foley P and P Riederer (2000) The motor circuit of the human basal ganglia reconsidered.J. Neural Transm 58, 97–110.

    Google Scholar 

  • Fredriksson A, N Schroder, P Eriksson, I Izquierdo and T Archer (1999) Neonatal iron exposure induces neurobehavioural dysfunctions in adult mice.Toxicol Appl. Pharmacol. 159, 25–30.

    Article  PubMed  CAS  Google Scholar 

  • Fredriksson A, N Schroumlautder, P Eriksson, I Izquierdo and T Archer (2001) Neonatal iron potentiates adult MPTP-induced neurodegenerative and functional deficits.Parkinson. Rel. Disord. 7, 97–105.

    Article  Google Scholar 

  • Gerlach M, D Ben-Shachar, P Riederer and MBH Youdim (1994) Altered brain metabolism of iron as a cause of neurodegenerative diseases?J. Neurochem. 63, 793–807.

    PubMed  CAS  Google Scholar 

  • Gerlach M, AX Trautwein, L Zecca, MBH Youdim and P Riederer (1995) Mössbauer spectroscopic studies of purified human neuromelanin isolated from the substantia nigra.J. Neurochem. 65, 923–926.

    PubMed  CAS  Google Scholar 

  • Gibb W (1992) Melanin, tyrosine hydroxylase, calbindin and substance P in the human midbrain and substantia nigra in relation to nigrastriatal projections and differential neuron susceptibility in Parkinson's disease.Brain. Res. 581, 283–291.

    Article  PubMed  CAS  Google Scholar 

  • Good P, W Olanow and D Perl (1992) Neuromelanin-containing neurons of the substantia nigra accumulate iron and aluminum in Parkinson's disease: a LAMMA study.Brain Res. 593, 343–346.

    Article  PubMed  CAS  Google Scholar 

  • Gorell JM, RJ Ordidge, GG Brown, JC Deniau, NM Buderer and JA Helpern (1995) Increased iron-related MRI contrast in the substantia nigra in Parkinson's disease.Neurology 45, 1138–1143.

    PubMed  CAS  Google Scholar 

  • Griffiths PD, BR Dobson, GR Jones and DT Clarke (1999) Iron in the basal ganglia in Parkinson's disease. Anin vitro study using extended X-ray absorbtin fine structure and cryo-electron microscopy.Brain 122, 667–673.

    Article  PubMed  Google Scholar 

  • Harrison PM and P Arosio (1996) The ferritins: molecular properties, iron storage function and cellular regulation.Biochem. Biophys. Acta 1275, 161–203.

    Article  PubMed  Google Scholar 

  • He Y, T Lee and S Leong (1999) Time course of dopaminergic cell death and changes in iron, ferritin and transferrin levels in the rat substantia nigra after 6-hydroxydopamine (6-OHDA) lesioning.Free Radic. Res. 13, 103–112.

    Article  Google Scholar 

  • Henderson J, K Carpenter, H Cartwright and G Halliday (2000) Loss of thalamic intralaminar nuclei in progressive supranuclei palsy and Parkinson's disease.Brain 123, 1410–1421.

    Article  PubMed  Google Scholar 

  • Hirsch E, A Graybiel and Y Agid (1988) Melanized dopamine neurons are differentially susceptible to degeneration in Parkinson's disease.Nature 334, 345–348.

    Article  PubMed  CAS  Google Scholar 

  • Jellinger K (1989) Pathology of Parkinson's syndrome In: Calne DB, Ed.,Handbook of Experimental Pharmacology, Vol. 88 (Springer-Verlag, Berlin Heidelberg), pp 47–112.

    Google Scholar 

  • Jellinger KA (1991) Pathology of Parkinson's disease. Changes other than the nigrostriatal pathway.Mol. Chem. Neuropathol. 14, 153–197.

    Article  PubMed  CAS  Google Scholar 

  • Jellinger K, W Paulus, I Grundke-Iqbal, P Riederer and MBH Youdim (1990) Brain iron and ferritin in Parkinson's disease and Alzheimer's disease.J. Neural Transm. (P.D.-Sect.) 2, 327–340.

    Article  CAS  Google Scholar 

  • Jellinger K, E Kienzel, G Rumpelmair, P Riederer, H Stachellberger, D Ben-Shachar and MBH Youdim (1992) Iron-melanin complex in substantia nigra of Parkinsonian brains: an X-ray microanalysis,J. Neurochem. 59, 1168–1171.

    Article  PubMed  CAS  Google Scholar 

  • Kastner A, E Hirsch, O Lejeune, F Javoy-Agid O Rascol and Y Agid (1992) Is the vulnerability of neurons in the substantia nigra of patients with Parkinson's disease related to their neuromelanin content?J. Neurochem. 59, 1080–1089.

    Article  PubMed  CAS  Google Scholar 

  • Kehrer J (2000) The Haber-Weiss reaction and mechanisms of toxicity.Toxicology 149, 43–50.

    Article  PubMed  CAS  Google Scholar 

  • Kienzl E, K Jellinger, H Stachelberger and W Linert (1999) Iron as a catalyst for oxidative stress in the pathogenesis of Parkinson's disease?Life Sci. 65, 1973–1976.

    Article  PubMed  CAS  Google Scholar 

  • Kitada T, S Asakawa, H Matsumine, N Hattori, H Shimura, S Minoshima, N Shimizu and Y Mizuno (2000) Progress in the clinical and molecular genetics of familial parkinsonism.Neurogenetics 2, 207–218.

    Article  PubMed  CAS  Google Scholar 

  • Krol ES and DC Liebler (1998) Photoprotective actions of natural and synthetic melanins.Chem. Res. Toxicol. 11, 1434–1440.

    Article  PubMed  CAS  Google Scholar 

  • Kubis N, B Faucheux, G Ransmayr, P Damier, C Duyckaerts, D Henin, B Forette, Y Le Charpentier, J Hauw, Y Agid and E Hirsch (2000) Preservation of midbrain catecholaminergic neurons in very old human subjects.Brain 123, 366–373. 660.

    Article  PubMed  Google Scholar 

  • Lan J and D Jiang (1997a) Desferrioxamine and vitamin E protect against iron and MPTP-induced neurodegeneration in mice.J. Neural Transm. 104, 469–481.

    Article  PubMed  CAS  Google Scholar 

  • Lan J and D Jiang (1997b) Excessive iron accumulation in the brain: a possible potential source of neurodegeneration in Parkinson's disease.J. Neural Transm. 104, 649

    Article  PubMed  CAS  Google Scholar 

  • Lopiano L, M Chiesa, D Digilio, G Giraudo, B Bergamasco and M Fasano (2000) Q-band EPR investigations of neuromelanin in control and Parkinson's disease patients.Biochem. Biophys. Acta 1500, 306–312.

    PubMed  CAS  Google Scholar 

  • Mann VM, JM Cooper, SE Daniel, K Srai, P Jenner, CD Marsden and AHV Schapira (1994) Complex I, iron, and ferritin in Parkinson's disease substantia nigra.Ann. Neurol. 36, 871–881.

    Article  Google Scholar 

  • Markesbery W (1997) Oxidative stress hypothesis in Alzheimer's disease.Free Rad. Biol. Med. 23, 134–147.

    Article  PubMed  CAS  Google Scholar 

  • Marsden CD (1961) Pigmentation in the nucleus substantia nigre of mammals.J. Anat. 95, 256–261.

    PubMed  CAS  Google Scholar 

  • Martin W, F Ye and P Allen (1998) Increasing striatal iron content associated with normal aging.Mov. Disord. 13, 281–286.

    Article  PubMed  CAS  Google Scholar 

  • McGeer P, S Itagaki, H Akiyama and E McGeer (1988) Rate of cell death in Parkinson's disease indicates an active neuropathological process.Ann. Neurol. 24, 574–576.

    Article  PubMed  CAS  Google Scholar 

  • Mochizuki H, K Nishi and Y Mizuno (1993) Iron-melanin complex is toxic to dopaminergic neurons in nigrostriatal co-culture.Neurodegeneration 2, 1–7.

    Google Scholar 

  • Offen D, I Ziv, A Barzilai, S Gorodin, E Glater, A Hochman and E Melamed (1997) Dopamine-melanin induces apoptosis in PC12 cells. Possible implications for the etiology of Parkinson's disease.Neurochem. Int. 31, 207–216.

    Article  PubMed  CAS  Google Scholar 

  • Offen D, S Gorodin, E Melamed, J Hanania and Z Malik (1999) Dopamine-melanin is actively phagocytized by PC12 cells and cerebellar granular cells: possible implications for the etiology of Parkinson's disease.Neurosci. Lett. 260, 101–104.

    Article  PubMed  CAS  Google Scholar 

  • Pilas B, T Sarna, B Kalyanaraman and H Swartz (1988) The effect of melanin on iron associated decomposition of hydrogen peroxide.Free Radic. Biol. Med. 4, 285–293.

    Article  PubMed  CAS  Google Scholar 

  • Prota G (1993) Melanins and Melanogenesis (Academic Press; San Diego, New York, Boston, London, Sydney, Tokyo, Toronto).

    Google Scholar 

  • Riederer P, E Sofic, WD Rauch, B Schmidt, GP Reynolds, K Jellinger and MBH Youdim (1989) Transition metals, ferritin, glutathione, and ascorbic acid in parkinsonian brains.J. Neurochem. 52, 515–520.

    Article  PubMed  CAS  Google Scholar 

  • Ryvlin P, E Broussolle H Piollet, F Viallet, Y Khalfallah and G Chazot (1995) Magnetic resonance imaging evidence of decreased putamenal iron content in idiopathic Parkinson's disease.Arch. Neurol. 52, 583–588.

    PubMed  CAS  Google Scholar 

  • Shima T, T Sarna, H Swartz, A Stroppolo, R Gerbasi and L Zecca (1997) Binding of iron to neuromelanin of human substantia nigra and synthetic melanin: an electron paramagnetic resonance spectroscopy study.Free Radic. Biol. Med. 23, 110–119.

    Article  PubMed  CAS  Google Scholar 

  • Smith MA, PLR Harris, LM Sayre and G Perry (1997) Iron accumulation in Alzheimer disease is a source of redox-generated free radicals.Proc. Natl. Acad. Sci. USA 94, 9866–9868.

    Article  PubMed  CAS  Google Scholar 

  • Sofic E, P Riederer, H Heinsen, H Beckman, GP Reynolds, G Hebenstreit and MBH Youdim (1988) Increased iron(III) and total iron content in post mortem substantia nigra of parkinsonian brain.J. Neural Transm. 74, 199–205.

    Article  PubMed  CAS  Google Scholar 

  • Sofic E, W Paulus, K Jellinger, P Riederer and MBH Youdim (1991) Selective increase of iron in substantia nigra zona compacta of parkinsonian brains.J. Neurochem. 56, 978–982.

    Article  PubMed  CAS  Google Scholar 

  • Temlett J, J Landsberg, F Watt and G Grime (1994) Increased iron in the substantia nigra compacta of the MPTP-lesioned hemiparkisonian African Green monkey: evidence from proton microprobe elemental microanalysis.J. Neurochem. 62, 134–146.

    Article  PubMed  CAS  Google Scholar 

  • Wüllner U, J Kornhuber, M Weller, JB Schulz, P-A Löschmann, P Riederer and T Klockgether (1999) Cell death and apoptosis regulating in Parkinson's disease — a cautionary note.Acta Neuropathol. 97, 408–412.

    Article  PubMed  Google Scholar 

  • Youdim MBH, D Ben-Shachar and P Riederer (1994) The enigma of neuromelanin in Parkinson's disease substantia nigra,J. Neural Transm. (Suppl.) 43, 113–122.

    CAS  Google Scholar 

  • Zareba M, A Bober, W Korytowski, L Zecca and T Sarna (1995) The effect of a synthetic neuromelanin on yield of free hydroxyl radicals generated in model systems.Biochem. Biophys. Acta 1271, 343–348.

    PubMed  Google Scholar 

  • Zecca L and HM Swartz (1993) Total and paramagnetic metals in human substantia nigra and its neuromelanin.J. Neural Transm. (P.D.-Sect.) 5, 203–213.

    Article  CAS  Google Scholar 

  • Zecca L, M Gallorini, V Schümann, A Trautwein, M Gerlach, P Riederer, P Vezzoni and D Tampellini (2001) Iron, neuromelanin and ferritin content in substantia nigra of normal subjects at different ages. Consequences for iron storage and neurodengerative processes.J. Neurochem. 76, 1766–1773.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manfred Gerlach.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerlach, M., Double, K.L., Ben-Shachar, D. et al. Neuromelanin and its interaction with iron as a potential risk factor for dopaminergic neurodegeneration underlying Parkinson's disease. neurotox res 5, 35–43 (2003). https://doi.org/10.1007/BF03033371

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03033371

Keywords

Navigation