Skip to main content
Log in

The relationship between lignin and morphological characteristics of the tracheary elements from cacao(Theobroma cacao L.) Hulls

  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

Tracheary elements (TEs) were physically separated from the hulls of cacao pods(Theobroma cacao L). Their morphological features were extensively investigated with scanning electron microscopy and chemical characterization. Spiral TEs were covered with a thin layer of primary wall that had a web-like structure on its outer surface. These TEs had a spiral circularity diameter of 8.2 ± 0.6 μm and an estimated secondary wall thickness of about 2.1 ± 0.2 μm. Polarized microscopy analysis revealed that the cellulose microfibrils were aligned parallel to that thickening. Lignin content was 36.1%, with a 0.13:1.00 molar ratio of syringyl to guaiacyl units and a 1.09:1.00 molar ratio of erythronic acid and threonic acid. Total yields of the alkaline nitrobenzene oxidation and ozonation products were 324.5 and 148.8 μmol g-1 of extract-free TEs, respectively. Based on these morphological and lignin characteristics, we conclude that fully ripened cacao hulls exhibit the same features of secondary wall thickening as those seen at an earlier stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Akiyama T, Magara K, Matsumoto Y, Meshitsuka G, Ishizu A, Lundquist K (2000) Proof of the presence of racemic forms of arylglycerol-β -aryl ether structure in lignin: Studies on the stereo structure of lignin by ozonation. J Wood Sci46: 414–415

    Article  CAS  Google Scholar 

  • Akiyama T, Sugimoto T, Matsumoto Y, Meshitsuka G (2002) Erythro/threo ratio of β -O-4 structures as an important structural characteristic of lignin. I: Improvement of ozonation method for the quantitative analysis of lignin side-chain structure. J Wood Sci48: 210–215

    Article  CAS  Google Scholar 

  • Anterola AM, Lewis NG (2002) Trend in lignin modification: A comprehensive analysis of the effects of genetic manipulations/ mutations on lignification and vascular integrity. Phytochemistry61: 221–294

    Article  PubMed  CAS  Google Scholar 

  • Bierhorst DW, Zamora PM (1965) Primary xylem elements and element associations of angiosperms. Amer J Bot52: 657–710

    Article  Google Scholar 

  • Burgess J (1985) An Introduction to Plant Cell Development. Cambridge University Press, Cambridge, pp 21–24, 94–128

    Google Scholar 

  • Carlquist S (1996) Wood, bark, and stem anatomy of gnetales: A summary. Intl J Plant Sci157: S58-S76

    Article  Google Scholar 

  • Carlquist S, Schneider EL (1997a) SEM studies on vessels in ferns. 2.Pteridium. Amer J Bot84: 581–587

    Article  Google Scholar 

  • Carlquist S, Schneider EL (1997b) SEM studies on vessels in ferns. 4.Astrolepis. Amer Fern J87: 43–50

    Article  Google Scholar 

  • Carlquist S, Schneider EL, Yatskievych G (1997) SEM studies on vessels in ferns. 1.Woodsia obtuse. Amer Fern J87: 1–8

    Article  Google Scholar 

  • Chen CL (1992) Nitrobenzene and cupric oxide oxidations,In SY Lin, CW Dence, eds, Methods in Lignin Chemistry. Springer-Verlag, Berlin, pp 301–321

    Google Scholar 

  • Chung BY, liyama K, Han KW (2003) Compositional characterization of cacao(Theobroma cacao L.) hull. Agric Chem Biotechnol46: 12–16

    CAS  Google Scholar 

  • Faix VO, Schweers W (1975) Vergleichende Untersuchungen an ploymermodellen des lignins (DHP’s) verschiedener Zusammensetzungen. 6. Mitt, athanolyse, nitrobenzol-oxidation und hydrogenolyse. Holzforschung29: 48–55

    Article  CAS  Google Scholar 

  • Fengel D, Wegener G (1984) Wood: Chemistry, Ultrastructure, Reactions. Walter de Gruyter, Berlin, pp 132

    Google Scholar 

  • Frost FH (1930a) Specialization in secondary xylem in dicotyledons. I. Origin of vessel. Bot Gaz89: 67–94

    Article  Google Scholar 

  • Frost FH (1930b) Specialization in secondary xylem in dicotyledons. I. Evolution of end wall of vessel segment. Bot Gaz90: 198–212

    Article  Google Scholar 

  • FukudaH (1997) Tracheary element differentiation. Plant Cell9: 1147–1156

    Article  PubMed  CAS  Google Scholar 

  • Fukuda H, Komamine A (1982) Lignin synthesis and its related enzymes as markers of tracheary-element differentiation in single cells isolated from the mesophyll ofZinnia elegans. Planta155: 423–430

    Article  CAS  Google Scholar 

  • Habu N, Matsumoto Y, Ishizu A, Nakano J (1987) Quantitative determination of the diarylpropane structure in lignin by ozonation. Mokuzai Gakkaishi33: 534–536

    CAS  Google Scholar 

  • Habu N, Matsumoto Y, Ishizu A, Nakano J (1988) Configurational study of phenylcoumaran type structure in lignin by ozonation. Mokuzai Gakkaishi34: 732–738

    CAS  Google Scholar 

  • liyama K, Lam TBT (1990) Lignin in wheat internodes. Part 1: The reactivities of lignin units during alkaline nitrobenzene oxidation. J Sci Food Agric51: 481–491

    Article  Google Scholar 

  • Jin Z, Akiyama T, Chung BY, Matsumoto Y, liyama K, Watanabe S (2003) Changes in lignin content of leaf litters during mulching. Phytochemistry64: 1023–1031

    Article  PubMed  CAS  Google Scholar 

  • Jung JH, Park CM (2007) Vascular development in plants: Specification of xylem and phloem tissues. J Plant Biol50: 301–305

    Article  CAS  Google Scholar 

  • Kaliamoorthy S, Krishnamurthy KV (1998) Secondary wall deposition in tracheary elements of cucumber grownin vitro. Biol Plant41: 515–522

    Article  Google Scholar 

  • Kim JH, Kim JS, Wi SG, Mun SP, Chung BY (2004) The cell wall characterization at immature and mature stages ofArabidopsis thaliana L. Agric Chem Biotechnol47: 11–14

    CAS  Google Scholar 

  • López-Serrano M, Fernández MD, Pomar F, Pedreño MA, Ros Barcelö A (2004)Zinnia elegans uses the same peroxidase isoenzyme complement for cell wall lignification in both single-cell tracheary elements and xylem vessels. J Exp Bot55: 423–431

    Article  PubMed  Google Scholar 

  • Matsumoto Y, Ishizu A, Nakano J (1986) Studies on chemical structure of lignin by ozonation. Holzforschung40: 81–85

    CAS  Google Scholar 

  • McCarthy JL, Islam A (2000) Lignin chemistry, technology, and utilization: A brief history,In WG Glasser, RA Northey, TP Schultz, eds. Lignin: Historical, Biological, and Materials Perspectives, Vol 742. ACS Symposium Series, American Chemical Society, Washington, DC, pp 2–99

    Google Scholar 

  • Nakashima J, Mizuno T, Takabe K, Fujita M, Saiki H (1997) Direct visualization of lignifying secondary wall thickenings inZinnia elegans cells in culture. Plant Cell Physiol38: 818–827

    CAS  Google Scholar 

  • Oda Y, Mimura T, Hasezawa S (2005) Regulation of secondary cell wall development by cortical microtubules during tracheary element differentiation inArabidopsis cell suspensions. Plant Physiol137: 1027–1036

    Article  PubMed  CAS  Google Scholar 

  • Robards AW, Wilson AJ (1993) Procedures in Electron Microscopy. John Wiley &Sons, New York, pp 13:0.1–13:4.3

    Google Scholar 

  • Romberger JA, Hejnowicz Z, Hill JF (1993) Plant Structure: Function and Development. Springer-Verlag, Berlin, pp 45–65, 89–121

    Google Scholar 

  • Sarkanen KV, Islam A, Anderson CD (1986) Ozonation,In SY Lin, CW Dence, eds, Methods in Lignin Chemistry. Springer-Verlag, Berlin, pp 387–406

    Google Scholar 

  • Schneider EL, Carlquist S (1997) SEM studies on vessels in ferns. 3.Phlebodium andPolystichum. Intl J Plant Sci158: 343–349

    Article  Google Scholar 

  • Schneider EL, Carlquist S (1998) SEM studies on vessels in ferns. 5.Woodsia scopulina. Amer Fern J88: 17–23

    Article  Google Scholar 

  • Schöning AG, Johansson G (1965) Absorptiometric determinationof acid-soluble lignin in semichemical bisulfite pulps and in some woods and plants. Svensk Papperstidn68: 607–613

    Google Scholar 

  • Terashima N, Fukushima K (1988) Heterogeneity in formation of lignin-XI: An autoradiographic study of the heterogeneous formation and structure of pine lignin. Wood Sci Technol22: 259–270

    Article  CAS  Google Scholar 

  • Terashima N, Nakashima J, Takabe K (1989) Proposed structure for protolignin in plant cell walls,In NG Lewis, S Sarkanen, eds, Lignin and Lignan Biosynthesis, Vol 697. ACS Symposium Series, American Chemical Society, Washington, DC, pp 180–193

    Google Scholar 

  • Ye ZH (2002) Vascular tissue differentiation and pattern formation in plants. Annu Rev Plant Biol53: 183–202

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Young Cho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chung, B.Y., Cho, JY., Lee, S.S. et al. The relationship between lignin and morphological characteristics of the tracheary elements from cacao(Theobroma cacao L.) Hulls. J. Plant Biol. 51, 139–144 (2008). https://doi.org/10.1007/BF03030723

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03030723

Keywords

Navigation