Skip to main content
Log in

A novel bi-directional promoter cloned from melon and its activity in cucumber and tobacco

  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

A bi-directional promoter, DP, was cloned by PCR amplification using the genomic DNA of melon as template. Analysis of itscis-acting elements in both directions revealed a series of inducible regulatory elements and some enhancer elements. To evaluate its transcriptional activity, DP in both directions was then cloned into vector pBI121 to replace the CaMV 35S promoter. DP in both directions also was inserted downstream of CaMV 35S to investigate whether the double promoter might affect expression of theuidA reporter gene at higher levels. Transient expression in cucumber leaves, stems, and fruits as well as in tobacco leaves and stems showed that DP in both directions drove transcription to much higher levels than did the single promoter CaMV 35S. However, activity of the double promoter was lower than the corresponding activity of the single promoter DP in both directions. These results demonstrate that DP is a natural bi-directional promoter, with much more activity than is found with the CaMV 35S promoter. Furthermore, in cucumber and tobacco, it is not suitable to insert DP in either direction downstream of the CaMV 35S promoter to form a double promoter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003)Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell15: 63–78

    Article  PubMed  CAS  Google Scholar 

  • An G, Costa MA, Mitra A, Ha SB, Marton L (1988) Organ-specific and developmental regulation of the nopaline synthase promoter in transgenic tobacco plants. Plant Physiol88: 547–552

    Article  PubMed  CAS  Google Scholar 

  • Bhullar S, Chakravarthy S, Advani S, Datta S, Pental D, Burma PK (2003) Strategies for development of functionally equivalent promoters with minimum sequence homology for transgene expression in plants: cis-elements in a novel DNA context versus domain swapping. Plant Physiol132: 988–998

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities utilizing the principle of protein-dye binding. Anal Biochem72: 248–254

    Article  PubMed  CAS  Google Scholar 

  • Callis J, Raasch J, Vierstra RD (1990) Ubiquitin extension proteins ofArabidopsis thaliana structure, localization, and expression of their promoters in transgenic tobacco. J Biol Chem265: 12486–12493

    PubMed  CAS  Google Scholar 

  • Chaturvedi CP, Sawant SV, Kiran K, Mehrotra R, Lodhi N, Ansari SA, Tuli R (2006) Analysis of polarity in the expression from a multifactorial bidirectional promoter designed for high-level expression of transgenes in plants. J Biotechnol123: 1–12

    Article  PubMed  CAS  Google Scholar 

  • Chen HJ, Wang SJ, Chen CC, Yeh KW (2006) New gene construction strategy in T-DNA vector to enhance expression level of sweet potato sporamin and insect resistance in transgenicBrassica oleracea. Plant Sci171: 367–374

    Article  CAS  Google Scholar 

  • Conrad U, Fiedler U (1998) Compartment-specific accumulation of recombinant immunoglobulins in plant cells: An essential tool for antibody production and immunomodulation of physiological functions and pathogen activity. Plant Mol Biol38: 101–109

    Article  PubMed  CAS  Google Scholar 

  • Ding JB, Cui ZZ, Sun SH, Jiang SJ (2004) A bidirectional promoter at the upstream of pp38 gene from Marek’s Disease Virus. Acta Microbiol Sinica44: 162–166 (in Chinese)

    CAS  Google Scholar 

  • Ellis JG, Llewellyn DJ, Walker JC, Dennis ES, Peacock WJ (1987) The ocs element: A 16 base pair palindrome essential for activity of the octopine synthase enhancer. EMBO J6: 3203–3208

    PubMed  CAS  Google Scholar 

  • Fischer R, Emans N (2000) Molecular farming of pharmaceutical proteins. Transgenic Res9: 279–299

    Article  PubMed  CAS  Google Scholar 

  • Foster E, Hattori J, Labbe H, Ouellet T, Fobert PR, James LE, Iyer VN, Miki BL (1999) A tobacco cryptic constitutive promoter, tCUF) revealed by T-DNA tagging. Plant Mol Biol41: 45–55

    Article  PubMed  CAS  Google Scholar 

  • Fusada N, Masuda T, Kuroda H, Shimada H, Ohta H, Takamiya K (2005) Identification of a novel cis-element exhibiting cytokinin-dependent protein bindingin vitro in the 5′-region of NADPH-protochlorophyllide oxidoreductase gene in cucumber. Plant Mol Biol59: 631–645

    Article  PubMed  CAS  Google Scholar 

  • Gowik U, Burscheidt J, Akyildiz M, Schlue U, Koczor M, Streubel M, Westhoff P (2004) cis-regulatory elements for mesophyll-specific gene expression in the C4 plantFlaveria trinervia, the promoter of the C4 phosphoenolpyruvate carboxylase gene. Plant Cell16: 1077–1090

    Article  PubMed  CAS  Google Scholar 

  • Hiatt A, Cafferkey R, Bowdish K (1989) Production of antibodies in transgenic plants. Nature342: 76–78

    Article  PubMed  CAS  Google Scholar 

  • Höfgen R, Willmitzer L (1988) Storage of competent cells forAgro-bacterium transformation. Nucleic Acids Res16: 9877

    Article  PubMed  Google Scholar 

  • Jefferson RA (1987) Assaying chimeric genes in plants: The GUS gene fusion system, Plant Mol Biol Rep5: 387–405

    Article  CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: β -glu- curonidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J6: 3901–3907

    PubMed  CAS  Google Scholar 

  • Jeon JS, Kim JH, Choi D, Lee JS, Choi YD, Lee KW (1994) GUS expression by CaMV 35S and rice Act1 promoters in transgenic rice. J Plant Biol 37(3): 371–380

    CAS  Google Scholar 

  • Jiao Y, Ma L, Strickland E, Deng XW (2005) Conservation and divergence of light-regulated genome expression patterns during seedling development in rice andArabidopsis. Plant Cell17: 3239–3256

    Article  PubMed  CAS  Google Scholar 

  • Kucho K, Yoshioka S, Taniguchi F, Ohyama K, Fukuzawa H (2003)Cis-acting elements and DNA-binding proteins involved in CO2-responsive transcriptional activation of Cah1 encoding a periplasmic carbonic anhydrase inChlamydomonas reinhardtii. Plant Physiol133: 783–793

    Article  PubMed  CAS  Google Scholar 

  • Lam E, Chua NH (1989) ASF-2: A factor that binds to the cauliflower mosaic virus 35S promoter and a conserved GATA motif in cab promoters. Plant Cell1: 1147–1156

    Article  PubMed  CAS  Google Scholar 

  • Li ZT, Jayasankar S, Gray DJ (2004) Bi-directional duplex promoters with duplicated enhancers significantly increase transgene expression in grape and tobacco. Transgen Res13: 143–154

    Article  CAS  Google Scholar 

  • Lopez-Molina L, Chua NH (2000) A null mutation in a bZIP factor confers ABA-insensitivity inArabidopsis thaliana. Plant Cell Physiol41: 541–547

    PubMed  CAS  Google Scholar 

  • Mirkovitch J, Mirsult ME, Laemmli UK (1984) Organization of the higher-order chromatin loop: A specific DNA attachment site on nuclear scaffold. Cell39: 223–232

    Article  PubMed  CAS  Google Scholar 

  • NakamuraM, Tsunoda T, Obokata J (2002) Photosynthesis nuclear genes generally lack TATA-boxes: A tobacco photosystem I gene responds to light through an initiator. Plant J29: 1–10

    Article  Google Scholar 

  • Odell JT, Nagy F, Chua NH (1985) Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter. Nature313: 810–812

    Article  PubMed  CAS  Google Scholar 

  • Sadanandom A, Piffanelli P, Knott T, Robinson C, Sharpe A, Lydiate D, Murphy D, Fairbairn DJ (1996) Identification of a peptide methionine sulphoxide reductase gene in an oleosin promoter inBrassica napus. Plant J10: 235–242

    Article  PubMed  CAS  Google Scholar 

  • Sawant S, Singh PK, Madanala R, Tuli R (2001) Designing of an artificial expression cassette for the high-level expression of transgenes in plants. Theor Appl Genet102: 635–644

    Article  CAS  Google Scholar 

  • Shaul O, Mironov V, Van Montagu M, Inze D (1999) Tobacco cultures transformed with cyclin-promoter-gus constructs reveal a discrepancy between gus mRNA levels and GUS protein activity upon leaving the stationary state. Plant Sci141: 67–71

    Article  CAS  Google Scholar 

  • Shin R, Kim MJ, Paek KH (2003) The CaTin1 (Capsicum annuum TMV-induced clone 1) and CaTin1–2 genes are linked head-to-head and share a bidirectional promoter. Plant Cell Physiol44: 549–554

    Article  PubMed  CAS  Google Scholar 

  • Shirsat A, Wilford N, Cray R, Boulter D (1989) Sequences responsible for the tissue specific promoter activity of a pea legumin gene in tobacco. Mol Gen Genet215: 326–331

    Article  PubMed  CAS  Google Scholar 

  • Suo G, Chen B, Zhang J, Gao Y, Wang X, He Z, Dai J (2006) Expression of active hBMP2 in transgenic tobacco plants. Plant Cell Rep25: 1316–1324

    Article  PubMed  CAS  Google Scholar 

  • Takai D, Jones PA (2004) Origins of bidirectional promoters: Computational analyses of intergenic distance in human genome. Mol Biol Evol21: 463–467

    Article  PubMed  CAS  Google Scholar 

  • Terzaghi WB, Cashmore AR (1995) Light-regulated transcription. Annu Rev Plant Physiol Plant Mol Biol46: 445–474

    Article  CAS  Google Scholar 

  • Van Engelen FA, Schouten A, Molthoff JW, Roosien J, Salinas J, Dirkse WG, Schots A, Bakker J, Gommers FJ, Jongsma MA, Bosch D, Stiekema WJ (1994) Coordinate expression of antibody subunit genes yields high levels of functional antibodies in roots of transgenic tobacco. Plant Mol Biol26: 1701–1710

    Article  Google Scholar 

  • Weiher H, Konig M, Gruss P (1983) Multiple point mutations affecting the simian virus 40 enhancer. Science219: 626–631

    Article  PubMed  CAS  Google Scholar 

  • Xie M, He Y, Gan S (2001) Bidirectionalization of polar promoters in plants. Nat Biotechnol19: 677–679

    Article  PubMed  CAS  Google Scholar 

  • Yamagata H, Masuzawa T, Nagaoka Y, Ohnishi T, Iwasaki T (1994) Cucumisin, a serine protease from melon fruits, shares structural homology with subtilisin and is generated from a large precursor. J Biol Chem269: 32725–32731

    PubMed  CAS  Google Scholar 

  • Yamagata H, Yonesu K, Hirata A, Aizono Y (2002) TGTCACA motif is a novel cis-regulatory enhancer element involved in fruit-specific expression of the cucumisin gene. J Biol Chem277: 11582–11590

    Article  PubMed  CAS  Google Scholar 

  • Yang S, Li X, Ding D, Hou J, Jin Z, Yu X, Bo T, Li W, Li M (2005) A method for filling in the cohesive ends of double-stranded DNA using Pfu DNA polymerase. Biotechnol Appl Biochem42: 223–226

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, McElroy D, Wu R (1991) Analysis of rice Act1 5′ region activity in transgenic rice plants. Plant Cell3: 1155–1165

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minggang Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, C., Ding, D., Yan, R. et al. A novel bi-directional promoter cloned from melon and its activity in cucumber and tobacco. J. Plant Biol. 51, 108–115 (2008). https://doi.org/10.1007/BF03030719

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03030719

Keywords

Navigation