Skip to main content
Log in

Cell-to-cell transport of macromolecules during early plant development

  • Review
  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

Plant cells exchange developmental signals, distribute nutrients and ribonucleoprotein complexes through dynamic intercellular channels termed plasmodesmata (PD). Multidisciplinary investigations over the last decade have provided evidence that plasmodesmatal regulation is critical to various basic plant functions, such as development, host-pathogen interactions, and systemic RNA-silencing. This review highlights the cell-to-cell transport of micro- and macromolecules via PD during embryo and seedling growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Atkins D, Hull R, Wells B, Roberts K, Moore R Beachy RN (1991) The tobacco mosaic virus 30K movement protein in transgenic tobacco plants is localized to plasmodesmata. J Gen Virol72: 209–211

    Article  PubMed  CAS  Google Scholar 

  • Baluska F, Cvrckova F, Kendrick-Jones J, Volkmann D (2001) Sink plasmodesmata as gateways for phloem unloading. Myosin VIII and calreticulin as molecular determinants of sink strength? Plant Physiol126: 39–46

    Article  CAS  Google Scholar 

  • Baulcombe D (2002) RNA silencing. Curr Biol12: R82–84

    Article  PubMed  CAS  Google Scholar 

  • Berleth T, Chatfield S (2002) Embryogenesis: Pattern formation from a single cell,In C Somerville, E Meyerowitz, eds, The Arabidopsis Book. American Society of Plant Biologists, Rockville, pp 1–22

    Google Scholar 

  • Blackman LM, Harper JD, Overall RL (1999) Localization of a centrin-like protein to higher plant plasmodesmata. Eur J Cell Biol78: 297–304

    PubMed  CAS  Google Scholar 

  • Cilia ML, Jackson D (2004) Plasmodesmata form and function. Curr Opin Cell Biol16: 500–506

    Article  PubMed  CAS  Google Scholar 

  • Cutler SR, Ehrhardt DW, Griffitts JS, Somerville CR (2000) Random CFP::cDNA fusions enable visualization of subcellular structures in cells ofArabidopsis at a high frequency. Proc Natl Acad Sci USA97: 3718–3723

    Article  PubMed  CAS  Google Scholar 

  • Ding B, Itaya A, Qi Y (2003) Symplasmic protein and RNA traffic: Regulatory points and regulatory factors. Curr Opin Plant Biol6: 596–602

    Article  PubMed  CAS  Google Scholar 

  • Duckett CM, Oparka KJ, Prior DAM, Dolan L, Roberts K (1994) Dye-coupling in the root epidermis ofArabidopsis is progressively reduced during development. Development120: 3247–3255

    CAS  Google Scholar 

  • Erwee MG, Goodwin PB (1985) Symplast domains in extrastellar tissues ofEgeria densa Planch. Planta163: 9–19

    Article  CAS  Google Scholar 

  • Escobar NM, Haupt S, Thow G, Boevink P, Chapman S, Oparka K (2003) High throughput viral expression of cDNA-green fluorescent protein fusions reveals novel subcellular addresses and identifies unique proteins that interact with plasmodesmata. Plant Cell15: 1507–1523

    Article  PubMed  CAS  Google Scholar 

  • Faulkner C, Brandom J, Maule A, Oparka K (2005a) Plasmodesmata 2004: Surfing the symplasm. Plant Physiol137: 607–610

    Article  CAS  Google Scholar 

  • Faulkner CR, Blackman LM, Cordwell SJ, Overall RL (2005b) Proteomic identification of putative plasmodesmatal proteins fromChara corallina. Proteomics5: 2866–2875

    Article  CAS  Google Scholar 

  • Ghoshroy S, Lartey R, Sheng J, Citovsky V (1997) Transport of proteins and nucleic acids through plasmodesmata. Annu Rev Plant Physiol Plant Mol Biol48: 27–50

    Article  PubMed  CAS  Google Scholar 

  • Hake S (2001) Transcription factors on the move. Trends Genet17: 2–3

    Article  PubMed  CAS  Google Scholar 

  • Heinlein M, Epel BL (2004) Macromolecular transport and signaling through plasmodesmata. Intl Rev Cytol235: 93–164

    Article  CAS  Google Scholar 

  • Johnston D, Nusslein-Volhard C (1992) The origin of pattern and polarity in theDrosophila embryo. Cell68: 201–219

    Article  Google Scholar 

  • Jurgens G, Mayer U (1994)Arabidopsis, In J Bard, ed, A Colour Atlas of Developing Embryos. Wolfe, London, pp 7–21

    Google Scholar 

  • Kim I, Cho E, Crawford K, Hempel FD, Zambryski PC (2005b) Cell-to-cell movement of CFP during embryogenesis and early seedling development inArabidopsis. Proc Natl Acad Sci USA 102:2227–2231

    Article  CAS  Google Scholar 

  • Kim I, Hempel FD, Sha K, Pfluger J, Zambryski PC (2002) Identification of a developmental transition in plasmodesmatal function during embryogenesis inArabidopsis thaliana. Development129: 1261–1272

    PubMed  CAS  Google Scholar 

  • Kim I, Kobayashi K, Cho E, Zambryski PC (2005a) Subdomains for transport via plasmodesmata corresponding to the apical-basal axis are established duringArabidopsis embryogenesis. Proc Natl Acad Sci USA102: 11945–11950

    Article  CAS  Google Scholar 

  • Kim JY (2005) Regulation of short-distance transport of RNA and protein. Curr Opin Plant Biol8: 45–52

    Article  PubMed  CAS  Google Scholar 

  • Kim JY, Yuan Z, Jackson D (2003; Developmental regulation and significance of KNOX protein trafficking inArabidopsis. Development130: 4351–4362

    Article  PubMed  CAS  Google Scholar 

  • Kurata T, Okada K, Wada T (2005) Intercellular movement of transcription factors. Curr Opin Plant Biol8: 600–605

    Article  PubMed  CAS  Google Scholar 

  • Kwiatkowska M (1999) Plasmodesmal coupling and cell differentiation in algae,In A van Bel, W van Kesteren, eds, Plasmodesmata: Structure, Function, Role in Cell Communication. Springer, Berlin, Heidelberg, New York, pp 205–224

    Google Scholar 

  • Laux T, Wurschum T, Breuninger H (2004) Genetic regulation of embryonic pattern formation. Plant Cell16: S190–202

    Article  PubMed  CAS  Google Scholar 

  • Lee JY, Taoka K, Yoo BC, Ben-Nissan G, Kim DJ, Lucas WJ (2005) Plasmodesmal-associated protein kinase in tobacco andArabidopsis recognizes a subset of non-cell-autonomous proteins. Plant Cell17: 2817–2831

    Article  PubMed  CAS  Google Scholar 

  • Lee JY, Yoo BC, Rojas MR, Gomez-Ospina N, Staehelin LA, Lucas WJ (2003) Selective trafficking of non-cell-autonomous proteins mediated by NtNCAPP1. Science299: 392–396

    Article  PubMed  CAS  Google Scholar 

  • Lucas WJ, Lee JY (2004) Plasmodesmata as a supracellular control network in plants. Nat Rev Mol Cell Biol5: 712–726

    Article  PubMed  CAS  Google Scholar 

  • Mansfield SG, Briarty LG (1991) Early embryogenesis inArabidopsis thaliana: II. The developing embryo. Can J Bot69: 461–476

    Article  Google Scholar 

  • McLean BG, Hempel FD, Zambryski PC (1997) Plant intercellular communication via plasmodesmata. Plant Cell9: 1043–1054

    Article  PubMed  CAS  Google Scholar 

  • Nakajima K, Sena G, Nawy T, Benfey PN (2001) Intercellular movement of the putative transcription factor SHR in root patterning. Nature413: 307–311

    Article  PubMed  CAS  Google Scholar 

  • Oparka KJ (2004) Getting the message across: How do plant cells exchange macromolecular complexes? Trends Plant Sci9: 33–41

    Article  PubMed  CAS  Google Scholar 

  • Oparka KJ, Duckett CM, Prior DAM, Fisher DB (1994) Real-time imaging of phloem unloading in the root tip ofArabidopsis. Plant J6: 759–766

    Article  Google Scholar 

  • Poethig R, Coe E, Johri M (1986) Cell lineage patterns in maize embryogenesis: A clonal analysis. Dev Biol117: 392–404

    Article  Google Scholar 

  • Provencher LM, Miao L, Sinha N, Lucas WJ (2001) Sucrose export defectivel encodes a novel protein implicated in chloroplast-to-nucleus signaling. Plant Cell13: 1127–1141

    Article  PubMed  CAS  Google Scholar 

  • Roberts AG (2005) Plasmodesmal structure and development,In KJ Oparka, ed, Plasmodesmata. Blackwell, Oxford, pp 1–32

    Chapter  Google Scholar 

  • Russin WA, Evert RF, Vanderveer PJ, Sharkey TD, Briggs SP (1996) Modification of a specific class of plasmodesmata and loss of sucrose export ability in thesucrose export defective 7 maize mutant. Plant Cell8: 645–658

    Article  PubMed  CAS  Google Scholar 

  • Sagi G, Katz A, Guenoune-Gelbart D, Epel BL (2005) Class 1 reversibly glycosylated polypeptides are plasmodesmal-associated proteins delivered to plasmodesmata via the Golgi apparatus. Plant Cell17: 1788–1800

    Article  PubMed  CAS  Google Scholar 

  • Saulsberry A, Martin PR, O’Brien T, Sieburth LE, Pickett FB (2002) The induced sectorArabidopsis apical embryonic fate map. Development129: 3403–3410

    PubMed  CAS  Google Scholar 

  • Scheres B, Wolkenfelt H, Willemsen V, Terlouw M, Lawson E, Dean C, Weisbeek P (1994) Embryonic origin of theArabidopsis primary root and root meristem initials. Development120: 2475–2487

    CAS  Google Scholar 

  • Stadler R, Lauterbach C, Sauer N (2005a) Cell-to-cell movement of green fluorescent protein reveals post-phloem transport in the outer integument and identifies symplastic domains inArabidopsis seeds and embryos. Plant Physiol139: 701–712

    Article  CAS  Google Scholar 

  • Stadler R, Wright KM, Lauterbach C, Amon G, Gahrtz M, Feuerstein A, Oparka KJ, Sauer N (2005b) Expression of GFP-fusions inArabidopsis companion cells reveals non-specific protein trafficking into sieve elements and identifies a novel post-phloem domain in roots. Plant J41: 319–331

    Article  CAS  Google Scholar 

  • Tilney LG, Cooke TJ, Connelly PS, Tilney MS (1990) The distribution of plasmodesmata and its relationship to morphogenesis in fern gametophytes. Development110: 1209–1221

    PubMed  CAS  Google Scholar 

  • Tomenius K, Clapham D, Meshi T (1987) Localization by immunogold cytochemistry of the virus coded 30 kD protein in plasmodesmata of leaves infected with tobacco mosaic virus. Virology160: 363–371

    Article  PubMed  CAS  Google Scholar 

  • van der Schoot C, Deitrich MA, Storms M, Verbeke JA, Lucas WJ (1995) Establishment of a cell-to-cell communication pathway between separate carpels during gynoecium development. Planta195: 450–455

    Article  Google Scholar 

  • van der Schoot C, Rinne P (1999) The symplastic organization of the shoot apical meristem,In A van Bel, W van Kesteren, eds, Plasmodesmata: Structure, Function, Role in Cell Communication. Springer, Berlin, Heidelberg, New York, pp 357

    Google Scholar 

  • van der Schoot C, van Bel A (1990) Mapping membrane potential differences and dye-coupling in internodal tissues of tomato(Solarium lycopersicum L). Planta182: 9–21

    Article  Google Scholar 

  • Voinnet O (2002) RNA silencing: small RNAs as ubiquitous regulators of gene expression. Curr Opin Plant Biol5: 444–451

    Article  PubMed  CAS  Google Scholar 

  • Wada T, Kurata T, Tominaga R, Koshino-Kimura Y, Tachibana T, Goto K, Marks MD, Shimura Y, Okada K (2002) Role of a positive regulator of root hair development, CAPRICE, inArabidopsis root epidermal cell differentiation. Development129: 5409–5419

    Article  PubMed  CAS  Google Scholar 

  • Wolpert L (2002) Principles of Development. Oxford University Press, New York

    Google Scholar 

  • Wu X, Dinneny JR, Crawford KM, Rhee Y, Citovsky V, Zambryski PC, Weigel D (2003) Modes of intercellular transcription factor movement in theArabidopsis apex. Development130: 3735–3745

    Article  PubMed  CAS  Google Scholar 

  • Wu X, Weigel D, Wigge PA (2002) Signaling in plants by intercellular RNA and protein movement. Genes Dev16: 151–158

    Article  PubMed  CAS  Google Scholar 

  • Zambryski P (2004) Cell-to-cell transport of proteins and fluorescent tracers via plasmodesmata during plant development. J Cell Biol164: 165–168

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Insoon Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, I. Cell-to-cell transport of macromolecules during early plant development. J. Plant Biol. 50, 266–273 (2007). https://doi.org/10.1007/BF03030654

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03030654

Keywords

Navigation