Skip to main content
Log in

Salt-stress signaling

  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

Salinity stress has a major impact on plant growth and development. Increasing concentrations of salt in farm soils means that researchers must develop tolerant crops if the global food supply is to be sustained. Salt adaptation involves a complex network of different mechanisms whose responses to high salinity are regulated in an integrated fashion. The salt-stress signaling cascade(s) that activates these mechanisms starts by perceiving the saline environment. However, little is known about the components involved in either the perception or signaling of this stress. The mechanisms that are activated under such conditions include those responsible for ion homeostasis and osmotic adjustment. Here, we review the current understanding of those molecular mechanisms used by plants to respond and adapt to salt stress. Particular attention is paid to the information yielded by genetic analyses of the yeast modelSaccharomyces cerevisiae and the higher-plant model system ofArabidopsis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Anas SSM, Vivekanandan M (2000) Influence of NaCI salinity on the behavior of hydrolases and phosphatases in mulberry genotype: Relationship to salt tolerance. J Plant Biol43: 217–225

    Article  CAS  Google Scholar 

  • Anderson JA, Huprikar SS, Kochian LV, Lucas WJ, Gaber RF (1992) Functional expression of a probableArabidopsis thaliana potassium channel inSaccharomyces cerevisiae. Proc Natl Acad Sci USA89: 3736–3740

    Article  PubMed  CAS  Google Scholar 

  • Apse MP, Aharon GS, Snedden WA, Blumwald E (1999) Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport inArabidopsis. Science285: 1256–1258

    Article  PubMed  CAS  Google Scholar 

  • Audran C, Borel C, Frey A, Sotta B, Meyer C, Simonneau T, Marion-Poll A (1998) Expression studies of the zeaxanthin epoxidase gene inNicotiana plumbaginifolia. Plant Physiol118: 1021–1028

    Article  PubMed  CAS  Google Scholar 

  • Blumwald E, Poole RJ (1985) Na+/H+ antiport in isolated tonoplast vesicles from storage tissue of Betavulgaris. Plant Physiol78: 163–167

    Article  PubMed  CAS  Google Scholar 

  • Bressan RA, Zhang C, Zhang H, Hasegawa PM, Bohnert HJ, Zhu JK (2001) Learning from theArabidopsis experience, the next gene search paradigm. Plant Physiol127: 1354–1360

    Article  PubMed  CAS  Google Scholar 

  • Cassells AC, Doyle BM (2003) Genetic engineering and mutation breeding for tolerance to abiotic and biotic stresses: Science, technology and safety. Bulg J Plant Physiol Special issue: 52-82

  • Chinnusamy V, Jagendorf A, Zhu JK (2005) Understanding and improving salt tolerance in plants. Crop Sci45: 437–448

    CAS  Google Scholar 

  • Chinnusamy V, Stevenson B, Lee BH, Zhu JK (2002) Screening for gene regulation mutants by bioluminescence imaging. Sci STKE140: PL10

    Google Scholar 

  • Cramer GR, Lynch J, Luchli A, Epstein E (1987) Influx of Na+, K+, and Ca2+ into roots of salt-stressed cotton seedlings. Plant Physiol83: 510–516

    Article  PubMed  CAS  Google Scholar 

  • Cunningham KW, Fink GR (1996) Calcineurin inhibits VCX1-dependent H+/Ca2+ exchange and induces Ca2+ ATPases inSaccharomyces cerevisiae. Mol Cell Biol16: 2226–2237

    PubMed  CAS  Google Scholar 

  • Dietz KJ, Tavakoli N, Kluge C, Miura T, Sharma SS, Harris GC, Chardonnens AN, Golldack D (2001) Significance of the V-type ATPase for the adaptation to stressful growth conditions and its regulation on the molecular and biochemical level. J Exp Bot52: 1969–1980

    Article  PubMed  CAS  Google Scholar 

  • Dreyer I, Horeu C, Lemaillet G, Zimmermann S, Bush DR, Rod-riguez-Navarro A, Schachtman DP, Spalding EP, Sentenac H, Gaber RF (1999) Identification and characterization of plant transporters using heterologous expression systems. J Exp Bot50: 1073–1087

    Article  CAS  Google Scholar 

  • FAO (2005) Global Network on Integrated Soil Management for Sustainable Use of Salt-Affected Soils. FAO Land and Plant Nutrition Management Service, Italy http://www.fao.org/ag/agl/ agll/spush

  • Flowers TJ (2004) Improving crop salt tolerance. J Exp Bot55: 307–319

    Article  PubMed  CAS  Google Scholar 

  • Flowers TJ, Troke PF, Yeo AR (1977) The mechanism of salt tolerance in halophytes. Annu Rev Plant Physiol28: 89–121

    Article  CAS  Google Scholar 

  • Geisler M, Frange N, Gomes E, Martinoia E, Palmgren MG (2000) The ACA4 gene ofArabidopsis encodes a vacuolar membrane calcium pump that improves salt tolerance in yeast. Plant Physiol124: 1814–1827

    Article  PubMed  CAS  Google Scholar 

  • Guo Y, Halfter U, Ishitani M, Zhu JK (2001) Molecular characterization of functional domains in the protein kinase SOS2 that is required for plant salt tolerance. Plant Cell13: 1383–1399

    Article  PubMed  CAS  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert H (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol51: 463–499

    Article  PubMed  CAS  Google Scholar 

  • Hayashi H, Mustardy L, Deshnium P, Ida M, Murata N (1997) Transformation ofArabidopsis thaliana with the coda gene for choline oxidase; accumulation of glycinebetaine and enhanced tolerance to salt and cold stress. Plant J12: 133–142

    Article  PubMed  CAS  Google Scholar 

  • Himmelbach A, Yang Y, Grill E (2003) Relay and control of abscisic acid signaling. Curr Opin Plant Biol6: 470–479

    Article  PubMed  CAS  Google Scholar 

  • Hirsch RE, Lewis BD, Spalding EP, Sussman MR (1998) A role for the AKT1 potassium channel in plant nutrition. Science280: 918–921

    Article  PubMed  CAS  Google Scholar 

  • Hirschi KD (2004) The calcium conundrum; both versatile nutrient and specific signal. Plant Physiol136: 2438–2442

    Article  PubMed  CAS  Google Scholar 

  • Inan G, Zhang Q, Li P, Wang Z, Cao Z, Zhang H, Zhang C, Quist TM, Goodwin SM, Zhu J, Shi H, Damsz B, Charbaji T, Gong Q, Ma S, Fredricksen M, Galbraith DW, Jenks MA, Rhodes D, Hasegawa PM, Bohnert HJ, Joly RJ, Bressan RA, Zhu JK (2004) Salt cress: A halophyte and cryophyteArabidopsis relative model system and its applicability to molecular genetic analyses of growth and development of extremophiles. Plant Physiol135: 1718–1737

    Article  PubMed  CAS  Google Scholar 

  • Ishitani M, Xiong L, Stevenson B, Zhu JK (1997) Genetic analysis of osmotic and cold stress signal transduction inArabidopsis: Interactions and convergence of abscisic acid-dependent and abscisic acid-independent pathways. Plant Cell9: 1935–1949

    Article  PubMed  CAS  Google Scholar 

  • Kashem MA, Sultana N, Ikeda T, Hori H, Loboda T, Mitsui T (2000) Alternation of starch-sucrose transition in germinating wheat seed under sodium chloride salinity. J Plant Biol43: 121–127

    Article  CAS  Google Scholar 

  • Kim SA, Kwak JM, Jae SK, Wang MH, Nam HG (2001) Overexpression of the AtGluR2 gene encoding anArabidopsis homolog of mammalian glutamate receptors impairs calcium utilization and sensitivity to ionic stress in transgenic plants. Plant Cell Physiol42: 74–84

    Article  PubMed  CAS  Google Scholar 

  • Leung J, Giraudat J (1998) Abscisic acid signal transduction. Annu Rev Plant Physiol Plant Mol Biol49: 199–222

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Zhu JK (1997) AnArabidopsis mutant that requires increased calcium for potassium nutrition and salt tolerance. Proc Natl Acad Sci USA94: 14960–14964

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Zhu JK (1998) A calcium sensor homolog required for plant salt tolerance. Science280: 1943–1945

    Article  PubMed  CAS  Google Scholar 

  • Maeda T, Takekawa M, Saito H (1995) Activation of yeast PBS2 MAPKK by MAPKKKs or by binding of an SH3-containing osmosensor. Science269: 554–558

    Article  PubMed  CAS  Google Scholar 

  • Maeda T, Wurgler-Murphy SM, Saito H (1994) A two-component system that regulates an osmosensing MAP kinase cascade in yeast. Nature369: 242–245

    Article  PubMed  CAS  Google Scholar 

  • Mendoza I, Rubio F, Rodriguez-Navarro A, Pardo JM (1994) The protein phosphatase calcineurin is essential for NaCI tolerance ofSaccharomyces cerevisiae. J Biol Chem269: 8792–8796

    PubMed  CAS  Google Scholar 

  • Munna R (2005) Genes and salt tolerance: Bring them together. New Phytol167: 645–663

    Article  Google Scholar 

  • Mustacchi R, Hohmann S, Nielsen J (2006) Yeast system biology to unravel the network of life. Yeast23: 227–238

    Article  PubMed  CAS  Google Scholar 

  • Niu X, Bressan RA, Hasegawa PM, Pardo JM (1995) Ion homeostasis in NaCI stress environments. Plant Physiol109: 735–742

    PubMed  CAS  Google Scholar 

  • Ono H, Sawada K, Khunajakr N, Tao T, Yamamoto M, Hiramoto M, Shinmyo A, Takano M, Murooka Y (1999) Characterization of biosynthetic enzymes for ectoine as a compatible solute in a moderately halophilic eubacterium,Halomonas elongata. J Bact181: 91–99

    PubMed  CAS  Google Scholar 

  • O’Rourke SM, Herskowitz I, O’Shea EK (2002) Yeast go the whole HOG for the hyperosmotic response. Trends Gene18: 405–412

    Article  CAS  Google Scholar 

  • Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants. Ecotoxicol Environ Safety60: 324–349

    Article  PubMed  CAS  Google Scholar 

  • Parida AK, Das AB, Das P (2002) NaCI stress causes changes in photosynthetic pigments, proteins, and other metabolic components in the leaves of a true mangrove,Bruguiera parviflora, in hydroponic cultures. J Plant Biol45: 28–36

    Article  CAS  Google Scholar 

  • Qi Z, Spalding EP (2004) Protection of plasma membrane K+ transport by the salt overly sensitivel Na+/H+ antiporter during salinity stress. Plant Physiol136: 2548–2555

    Article  PubMed  CAS  Google Scholar 

  • Quesada V, Ponce MR, Micol JL (2000) Genetic analysis of salt-tolerant mutants inArabidopsis thaiiana. Genetics154: 421–436

    PubMed  CAS  Google Scholar 

  • Qui QS, Guo Y, Dietrich MA, Schumaker KS, Zhu JK (2002) Regulation of SOS1, a plasma membrane Na+/H+ exchanger inArabidopsis thaiiana, by SOS2 and SOS3. Proc Natl Acad Sci USA99: 8436–8441

    Article  Google Scholar 

  • Quintero FJ, Ohta M, Shi H, Zhu JK, Pardo JM (2002) Reconstitution in yeast of theArabidopsis SOS signaling pathway for Na+ homeostasis. Proc Natl Acad Sci USA99: 9061–9066

    Article  PubMed  CAS  Google Scholar 

  • Rus A, Lee BH, Munoz-Mayor A, Sharkhuu A, Miura K, Zhu JK, Bressan RA, Hasegawa PM (2004) AtHKT1 facilitates Na+ homeostasis and K+ nutritionin Planta. Plant Physiol136: 2500–2511

    Article  PubMed  CAS  Google Scholar 

  • Rus A, Yokoi S, Sharkhuu A, Reddy M, Lee B-H, Matsumoto TK, Koiwa H, Zhu JK, Bressan RA, Hasegawa PM (2001) AtHK1 is a salt tolerance determinant that controls Na+ entry into plant roots. Proc Natl Acad Sci USA98: 14150–14155

    Article  PubMed  CAS  Google Scholar 

  • Saito H, Tatebayashi K (2004) Regulation of the osmoregulatory HOG MAPK cascade in yeast. J Biochem136: 267–272

    Article  PubMed  CAS  Google Scholar 

  • Saleki R, Young P, Lefebvre DD (1993) Mutants ofArabidopsis thaliana capable of germination under saline conditions. Plant Physiol101: 839–845

    PubMed  CAS  Google Scholar 

  • Shabala L, Cuin TA, Newman IA, Shabala S (2005) Salinity-induced ion flux patterns from the excised roots ofArabidopsis sos mutants. Planta222: 1041–1050

    Article  PubMed  CAS  Google Scholar 

  • Shi H, Ishitani M, Kim C, Zhu JK (2000) TheArabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proc Natl Acad Sci USA97: 6896–6901

    Article  PubMed  CAS  Google Scholar 

  • Shi H, Zhu JK (2002) Regulation of expression of the vacuolar Na+/ H+ antiporter gene AtNHX1 by salt stress and ABA. Plant Mol Biol50: 543–550

    Article  PubMed  CAS  Google Scholar 

  • Shin D, Koo YD, Lee H, Baek D, Lee S, Cheon C, Kwak SS, Lee S, Yun DJ (2004) Athb-12, homeobox-leucin zipper domain protein fromArabidopsis thaliana, increases salt tolerance in yeast by regulating sodium exclusion. Biochem Biophys Res Commun323: 534–540

    Article  PubMed  CAS  Google Scholar 

  • Somerville C, Koornneef M (2002) A fortunate choice: The historyof Arabidopsis as a model plant. Nat Rev Gene3: 883–889

    Article  CAS  Google Scholar 

  • Sze H, Li X, Palmgren MG (1999) Energization of plant cell membranes by H+-pumping ATPases: Regulation and biosynthesis. Plant Cell11: 677–689

    Article  PubMed  CAS  Google Scholar 

  • Tsugane K, Kobayashi K, Niwa Y, Ohba Y, Wada K, Kobayashi H (1999) A recessiveArabidopsis mutant that grows photoautotrophically under salt stress shows enhanced active oxygen detoxification. Plant Cell11: 1195–1206

    Article  PubMed  CAS  Google Scholar 

  • Vera-Estrella R, Barkla BJ, Garcia-Ramiez L, Pantoja O (2005) Salt stress inThellungiella halophila activates Na+ transport mechanisms required for salinity tolerance. Plant Physiol139: 1507–1517

    Article  PubMed  CAS  Google Scholar 

  • Wang B, Liittge U, Ratajczak R (2001) Effect of salt treatment and osmotic stress on V-ATPase and V-PPase in leaves of the halophyteSuaeda salsa. J Exp Bot52: 2355–2365

    Article  PubMed  CAS  Google Scholar 

  • Xiong L, Gong Z, Rock CD, Subramanian S, Guo Y, Xu W, Galbraith D, Zhu JK (2001) Modulation of abscisic acid signal transduction and biosynthesis by an Sm-like protein inArabidopsis. Dev Cell1: 771–781

    Article  PubMed  CAS  Google Scholar 

  • Xiong L, Zhu JK (2002) Salt tolerance,In C Somerville, E Meyerowitz, eds,Arabidopsis Book. The American Society of Plant Biology, Rockville, pp 1–24

    Google Scholar 

  • Xiong L, Zhu JK (2003) Regulation of abscisic acid biosynthesis. Plant Physiol133: 29–36

    Article  PubMed  CAS  Google Scholar 

  • Yokoi S, Quintero FJ, Cubero B, Ruiz MT, Bressan RA, Hasegawa PM, Pardo JM (2002) Differential expression and function ofArabidopsis thaliana NHX Na+/H+ antiporters in the salt stress response. Plant J30: 529–539

    Article  PubMed  CAS  Google Scholar 

  • Zhu JK (2000) Genetic analysis of plant salt tolerance usingArabidopsis. Plant Physiol124: 941–948

    Article  PubMed  CAS  Google Scholar 

  • Zhu JK (2001) Plant salt tolerance. Trends Plant Sci6: 66–71

    Article  PubMed  CAS  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol53: 247–273

    Article  PubMed  CAS  Google Scholar 

  • Zhu JK (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol6: 441–445

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dae-Jin Yun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheong, M.S., Yun, DJ. Salt-stress signaling. J. Plant Biol. 50, 148–155 (2007). https://doi.org/10.1007/BF03030623

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03030623

Keywords

Navigation