Skip to main content
Log in

Altered physiology in trehalose-producing transgenic tobacco plants: Enhanced tolerance to drought and salinity stresses

  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

Transgenic tobaccoNicotiana tabacum L. var. SR1) plants that over-express theEscherichia coli trehalose-6-phosphate synthase (TPS) gene(otsA) synthesized small amounts of trehalose (<400 µg g-1 leaf) while non-transformants produced no detectable trehalose. Some transgenic plants expressing a high level ofotsA exhibited stunted growth and morphologically altered leaves. We tested F22 homozygous plants devoid of phenotypic changes to determine their physiological responses to dehydration and salinity stresses. All transgenic plants maintained better leaf turgidity under a limited water supply or after treatment with polyethylene glycol (PEG). Furthermore, fresh weight was maintained at higher levels after either treatment. The initial leaf water potential was higher in transgenic plants than non-transformants, but, in both plant types, was decreased to a comparable degree following dehydration. When grown with 250 mM NaCl, transgenic plants exhibited a significant delay in leaf withering and chlorosis, as well as more efficient seed germination. Our results suggest that either trehalose or trehalose-6-phosphate can act as an osmoprotective molecule without maintaining water potential, in contrast to other osmolytes. Furthermore, both appear to protect young embryos under unfavorable water status to ensure subsequent germination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Argüelles JC (2000) Physiological roles of trehalose in bacteria and yeasts: A comparative analysis. Arch Microbiol17: 217–224

    Google Scholar 

  • Bianchi G, Gamba A, Limiroli R, Pozzi N, Elster R, Salamini F, Bartels D (1993) The unusual sugar composition in leaves of the resurrection plantMyrothamnus flabellifolius. Physiol Plant87: 223–226

    Article  CAS  Google Scholar 

  • Blàzquez MA, Santos E, Flores CL, Martinez-Zapater JM, Salinas J, Gancedo C (1998) Isolation and molecular characterization of theArabidopsis TPS1 gene, encoding trehalose-6-phosphate synthase. Plant J13: 685–689

    Article  PubMed  Google Scholar 

  • BoyerJS, Bowen BL (1970) Inhibition of oxygen evolution in chloroplasts isolated from leaves with low water potentials. Plant Physiol45: 612–615

    Article  PubMed  CAS  Google Scholar 

  • Boyer JS, Knipling EB (1965) Isopiestic technique for measuring leaf water potentials with a thermocouple psychrometer. Pro Natl Acad Sci USA54: 1044–1051

    Article  Google Scholar 

  • Cabib E, Leloir LF (1958) The biosynthesis of trehalose-6-phosphate. J Biol Chem231: 259–275

    PubMed  CAS  Google Scholar 

  • Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem162: 156–159

    Article  PubMed  CAS  Google Scholar 

  • Crowe JH, Carpenter JF, Crowe LM (1998) The role of vitrification in anhydrobiosis. Annu Rev Physiol60: 73–103

    Article  PubMed  CAS  Google Scholar 

  • Crowe JH, Crowe LM, Chapman D (1984) Preservation of membranes in anhydrobiotic organisms: The role of trehalose. Science223: 701–703

    Article  PubMed  CAS  Google Scholar 

  • Crowe JH, Hoekstra FA, Crowe LM (1992) Anhydrobiosis. Annu Rev Physiol54: 579–599

    Article  PubMed  CAS  Google Scholar 

  • de Virgilio C, Hottiger T, Dominguez J, Boiler T, Wiemken A (1994) The role of trehalose synthesis for the acquisition of thermotolerance in yeast. I. Genetic evidence that trehalose is a thermoprotectant. Eur J Biochem219: 179–186

    Article  PubMed  Google Scholar 

  • Drennan PM, Smith MT, Goldsworthy D, van Staden J (1993) The occurrence of trehalose in the leaves of the desiccation-tolerant angiospermMyrothamnus flabellifolius Wiw. J Plant Physiol142: 493–496

    CAS  Google Scholar 

  • Elbein AD (1974) The metabolism of α,α-trehalose. Adv Carbohyd Chem Biochem30: 227–256

    Article  CAS  Google Scholar 

  • Garg AK, Kim J-K, Owens TG, Ranwala AP, Choi YD, Kochian LV, Wu RJ (2002) Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc Natl Acad Sci USA99: 15898–15903

    Article  PubMed  CAS  Google Scholar 

  • Giaever HM, Styrvold OB, Kaasen I, Strøm AR (1988) Biochemical and genetic characterization of osmoregulatory trehalose synthesis inEscherichia coli. J Bacteriol170: 2841–2849

    PubMed  CAS  Google Scholar 

  • Goddijn OJM, Smeekens S (1998) Sensing trehalose biosynthesis in plants. Plant J14: 143–146

    Article  PubMed  CAS  Google Scholar 

  • Goddijn OJM, Verwoerd TC, Voogd E, Krutwagen R, de Graaf P, Poels J, van Dun K, Ponstein A, Damm B, Pen J (1997) Inhibition of trehalase activity enhances trehalose accumulation in transgenic plants. Plant Physiol113: 181–190

    Article  PubMed  CAS  Google Scholar 

  • Guo N, Puhlev I, Brown DR, Mansbridge J, Levine F (2000) Trehalose expression confers desiccation tolerance on human cells. Nature Biotechnol18: 168–171

    Article  CAS  Google Scholar 

  • Hayashi H, Alia, Mustardy L, Deshnium P, Ida M, Murata N (1997) Transformation ofArabidopsis thaliana with thecodA gene for choline oxidase: Accumulation of glycinebetaine and enhanced tolerance to salt and cold stress. Plant J12: 133–142

    Article  PubMed  CAS  Google Scholar 

  • Holmström KO, Mantyla E, Welin B, Palva ET (1996) Drought tolerance in tobacco. Nature279: 683–684

    Article  Google Scholar 

  • Horsch RB, Fry J, Hoffmann NL, Wallroth M, Eichholtz D, Rogers SG, Fraley RT (1985) A simple and general method for transferring genes into plants. Science223: 496–498

    Article  Google Scholar 

  • Iwahashi H, Obuchi K, Fujii S, Komatsu Y (1995) The correlative evidence suggesting that trehalose stabilizes membrane structure in the yeastSaccharomyces cerevisiae. Cell Mol Biol41: 763–769

    PubMed  CAS  Google Scholar 

  • Jang I-C, Oh S-J, Seo J-S, Choi W-B, Song SI, Kim CH, Kim YS, Seo H-S, Choi YD, Nahm BH, Kim J-K (2003) Expression of a bifunctional fusion of theEscherichia coli genes for trehalose-6-phosphate synthase and tre-halose-6-phosphate phosphatase in transgenic rice plants increases trehalose accumulation and abiotic stress tolerance without stunting growth. Plant Physiol131: 516–524

    Article  PubMed  CAS  Google Scholar 

  • Jun S-S, Choi HJ, Yang JY, Hong Y-N (2001) Photosynthetic response to dehydration and high temperature in treha-lose-producing transgenic tobacco. 12th International Congress on Photosynthesis. CSIRO Publishing, Queensland

    Google Scholar 

  • Kaasen I, Falkenberg P, Styrvold OB, Strøm AR (1992) Molecular cloning and physical mapping of theotsBA genes, which encode the osmoregulatory trehalose pathway ofEscherichia coli: Evidence that transcription is activated byKatF (AppR). J Bacteriol174: 889–898

    PubMed  CAS  Google Scholar 

  • Kishor PBK, Hong Z, Miao G-H, Hu C-AA, Verma DPS (1995) Overexpression of δ1 pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol108: 1387–1394

    PubMed  CAS  Google Scholar 

  • Larsen PI, Sydnes LK, Landfald B, Strøm AR (1987) Osmoregulation inEscherichia coli by accumulation of organic osmolytes: Betaines, glutamic acid, and trehalose. Arch Microbiol147: 1–7

    Article  PubMed  CAS  Google Scholar 

  • Lee HY, Jun S-S, Hong Y-N (1998) Photosynthetic responses to dehydration in green pepper (Capsicum annuum L.) leaves. J Photosci5: 169–174

    CAS  Google Scholar 

  • Michel BE (1970) Carbowax 6000 compared with mannitol as a suppressant of cucumber hypocotyl elongation. Plant Physiol45: 507–509

    Article  PubMed  CAS  Google Scholar 

  • Mohanty P, Boyer JS (1976) Chloroplast response to low water potentials. IV. Quantum yield is reduced. Plant Physiol57: 704–709

    Article  PubMed  Google Scholar 

  • Müller J, Boiler T, Wiemken A (1995) Trehalose and trehalase in plants: Recent developments. Plant Sci12: 1–9

    Article  Google Scholar 

  • Müller J, Wiemken A, Aeschbacher R (1999) Trehalose metabolism in sugar sensing and plant development. Plant Sci147: 37–47

    Article  Google Scholar 

  • Pilon-Smits EAH, Ebskamp MJM, Paul MJ, Jeuken MJW, Weisbeek PJ, Smeekens SCM (1995) Improved performance of transgenic fructan-accumulating tobacco under drought stress. Plant Physiol107: 125–130

    PubMed  CAS  Google Scholar 

  • Pilon-Smits EAH, Terry N, Sears T, Kim H, Zayes A, Hwang SB, van Dun K, Voogd E, Verwoerd TC, Krut-wagen RWHH, Coddijn OJM (1998) Trehalose-producing transgenic tobacco plants show improved growth performance under drought stress. J Plant Physiol152: 525–532

    CAS  Google Scholar 

  • Renger G, Schreiber U (1986) Practical applications of fluorometric methods to algae and higher plant research,In Govindjee, J Amesz, DC Fork, eds, Light Emission by Plants and Bacteria. Academic Press, Orlando/London, pp 587–619

    Google Scholar 

  • Romero C, Bellés JM, VayáJL, Serrano R, Culiáñez-Macià FA (1997) Expression of the yeasttrehalose-6-phosphate synthase gene in transgenic tobacco plants: Pleiotropic phenotypes include drought tolerance. Planta201: 293–297

    Article  CAS  Google Scholar 

  • Schluepmann H, Pellny T, van Dijken A, Aghdasi M, Wobbes B, Paul M, Smeekens S (2004) Trehalose mediated growth inhibition ofArabidopsis seedlings is due to trehalose-6-phosphate accumulation. Plant Physiol135: 879–890

    Article  PubMed  CAS  Google Scholar 

  • Schluepmann H, Pellny T, van Dijken A, Smeekens S, Paul M (2003) Trehalose-6-phosphate is indispensable for carbohydrate utilization and growth inArabidopsis thaliana. Proc Natl Acad Sci USA100: 6849–6854

    Article  PubMed  CAS  Google Scholar 

  • Serrano R (1996) Salt tolerance in plants and microorganism: Toxicity targets and defense responses. Intl Rev Cytol165: 1–5

    Article  CAS  Google Scholar 

  • Singer MA, Lindquist S (1998) Multiple effects of trehalose on protein foldingin vitro andin vivo. Mol Cell1: 639–648

    Article  PubMed  CAS  Google Scholar 

  • Strom AR, Kaasen I (1993) Trehalose metabolism inEscherichia coli: Stress protection and stress regulation of gene expression. Mol Microbiol8: 205–210

    Article  PubMed  CAS  Google Scholar 

  • Tarczynski MC, Jensen RG, Bohnert HJ (1993) Stress protection of transgenic tobacco by production of the osmolyte mannitol. Science259: 508–510

    Article  PubMed  CAS  Google Scholar 

  • Thevelein JM (1984) Regulation of trehalose mobilization in fungi. Microbiol Rev48: 42–59

    PubMed  CAS  Google Scholar 

  • Vogel G, Aeschbacher RA, Müller J, Boiler T, Wiemken A (1998) Trehalose-6-phosphate phosphatase fromArabidopsis thaliana: Identification by functional complementation of the yeast tps2 mutant. Plant J13: 673–683

    Article  PubMed  CAS  Google Scholar 

  • Vogel G, Fiehn O, Jean-Richard-dit-Bressel L, Boiler T, Wiemken A, Aeschbacher RA, Wingler A (2001) Trehalose metabolism inArabidopsis: Occurrence of trehalose and molecular cloning and characterization of trehalose-6-phosphate synthase homologues. J Exp Bot52: 1817–1826

    Article  PubMed  CAS  Google Scholar 

  • Zentella R, Mascorro-Gallardo JO, van Dijck P, Folch-Mallol J, Bonini B, van Vaeck C, Gaxiola R, Covarrubias AA, Nieto-Sotelo J, Thevelein JM, Iturriaga G (1999) ASelaginella lepidophylla trehalose-6-phos-phate synthase complements growth and stress-tolerance defects in a yeasttps1 mutant. Plant Physiol119: 1437–1482

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Nam Hong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jun, SS., Yang, J.Y., Choi, H.J. et al. Altered physiology in trehalose-producing transgenic tobacco plants: Enhanced tolerance to drought and salinity stresses. J. Plant Biol. 48, 456–466 (2005). https://doi.org/10.1007/BF03030588

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03030588

Keywords

Navigation