Skip to main content
Log in

A study of the impact deformation and fracture behaviour of austenitic manganese steel

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

This study uses the split-Hopkinson pressure bar to investigate the impact deformation and fracture behaviour of austenitic manganese steel at strain rates ranging from 2.0×103 s−1 to 8.0×103 s−1 at room temperature. The experimental results indicate that strain rate exerts a significant influence on the mechanical properties of austenitic manganese steel. With an increasing strain rate, the impact flow stress, work hardening rate, and strain rate sensitivity increase, while the activation volume decreases. The variations of strain rate sensitivity and activation volume are closely related to the work hardening stress. The results of this study show that the observed flow behaviour is described accurately by the Zerilli-Armstrong constitutive law. Fractographic analysis reveals that the specimen fracture is dominated by the formation of an adiabatic shear band formation. Furthermore, dimple characteristics and cleavage facets are observed on the fracture surface, indicating a relatively ductile fracture mode. The cleavage fracture is found to be associated with the increasing strain rate, which gives rise to a loss of deformability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Nemat-Nasser and Y. Li,Acta Mater. 46, 565 (1998).

    Article  CAS  Google Scholar 

  2. W. S. Lee, W. C. Sue, C. F. Lin, and C. J. Wu,Mater. Sci. Tech. 15, 1379 (1999).

    CAS  Google Scholar 

  3. W. S. Lee, J. C. Shyu, and S. T. Chiou,Scri. Mater. 42, 51 (2000).

    Article  CAS  Google Scholar 

  4. G. Regazzoni, U. F. Kocks, and P. S. Follansbee,Acta metall. 35, 2865 (1987).

    Article  CAS  Google Scholar 

  5. P. S. Follansbee and G. T. Gray III,Mater. Sci. Eng. A 138, 23 (1991).

    Article  Google Scholar 

  6. E. Cerri, E. Evangelista, A. Forcellese, and H. J. McQueen,Mater. Sci. Eng. A 197, 181 (1995).

    Article  Google Scholar 

  7. J. D. Campbell,Mater. Sci. Eng. 12, 3 (1973).

    Article  CAS  Google Scholar 

  8. P. S. Follansbee and U. F. Kocks,Acta metall. 36, 81 (1988).

    Article  Google Scholar 

  9. R. J. Clifton,J. Appl. Mech. 50, 941 (1983).

    Article  Google Scholar 

  10. W. S. Lee and C. F. Lin,Mater. Sci. Eng. A 241, 48 (1998).

    Article  Google Scholar 

  11. C. G. Lee and S. Lee,Metall. Mater. Trans. A 29, 227 (1998).

    Article  Google Scholar 

  12. H. Kobayashi and B. Dodd,Int. J. Impact Engng. 8, 1 (1989).

    Article  Google Scholar 

  13. C. Fressengeas and A. Molinari,J. Mech. Phys. Solids 35, 185 (1987).

    Article  MATH  ADS  Google Scholar 

  14. M. A. Meyers and C. L. Wittman,Metall. Trans. A 21, 3153 (1990).

    Article  Google Scholar 

  15. F. H. Wu and L. B. Freund,J. Mech. Phys. Solids 32, 119 (1984).

    Article  ADS  Google Scholar 

  16. A. O. Inegbenebor, R. D. Jones, and B. Ralph,J. Mater. Sci. 24, 3529 (1989).

    Article  ADS  CAS  Google Scholar 

  17. Y. N. Dastur and W. C. Leslie,Metall. Trans. A 12, 749 (1981).

    Article  CAS  Google Scholar 

  18. W. S. Owen and M. Grujicic,Acta mater. 47, 111 (1999).

    Article  CAS  Google Scholar 

  19. T. A. El-Bitar and E. M. El-Banna,Can. Metall. Q. 39, 361 (2000).

    CAS  Google Scholar 

  20. E. Bayraktar, C. Levaillant, and S. Altintas,J. Mater. Proc. Tech. 47, 13 (1994).

    Article  Google Scholar 

  21. A. Goldberg, O. A. Ruano, and O. D. Sherby,Mater. Sci. Eng. A 150, 187 (1992).

    Article  Google Scholar 

  22. W. S. Lee, G. L. Xiea, and C. F. Lin,Mater. Sci. Eng. A 257, 256 (1998).

    Article  Google Scholar 

  23. F. Greulich and L. E. Murr,Mater. Sci. Eng. 39, 81 (1979).

    Article  CAS  Google Scholar 

  24. M. Malatynski and J. Klepaczko,Int. J. Mech. Sci. 22, 173 (1980).

    Article  Google Scholar 

  25. P. S. Follansbee and U. F. Kocks,Acta metall. 36, 81 (1988).

    Article  Google Scholar 

  26. H. Mecking and U. F. Kocks,Acta metall. 29, 1865 (1981).

    Article  CAS  Google Scholar 

  27. F. J. Zerilli and R. W. Armstrong,Acta metall. 40, 1803 (1992).

    Article  CAS  Google Scholar 

  28. H. Conrad,J. Metals 16, 582 (1964).

    CAS  Google Scholar 

  29. G. R. Johnson and W. H. Cook,7th International Symposium on Ballistics (eds., B. Janzon and J. Riegel), p. 541, The Hague, The Netherlands (1983).

  30. J. R. Klepaczko and C. Y. Chiem,J. Mech. Phys. Solids 34, 29 (1986).

    Article  ADS  Google Scholar 

  31. M. Zhou, R. J. Clifton, and A. Needleman,J. Mech. Phys. Solids 42, 423 (1994).

    Article  MATH  ADS  Google Scholar 

  32. F. J. Zerilli and R. W. Armstrong,Proc. Metal and Ceramic Matrix Composites and Other Advanced Materials (eds., Y. D. S. Rajapakse and J. R. Vinson), p. 121, ASME, New York, NY (1995).

    Google Scholar 

  33. F. J. Zerilli and R. W. Armstrong,J. Appl. Phys. 16, 1816 (1987).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Woei-Shyan Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, WS., Wang, BK. A study of the impact deformation and fracture behaviour of austenitic manganese steel. Met. Mater. Int. 12, 459–466 (2006). https://doi.org/10.1007/BF03027745

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03027745

Keywords

Navigation