Skip to main content
Log in

Effect of metallurgical parameters on shear band formation in low-carbon (∼0.20 Wt Pct) steels

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

With the objective of establishing the effects of the metallurgical condition on the propensity to form adiabatic shear bands, low-carbon steels (AISI 1018 and 8620) having widely different temperability responses were subjected to impact by cylindrical projectiles in the velocity range of 450 to 1050 m/s. These steels received a variety of mechanical and thermal treatments that provided a wide range of microstructures and mechanical responses. The propensity for shear band formation was strongly dependent on the mechanical response. It was measured by counting the length of shear bands per cross section. Microstructural characterization of the bands revealed that white-etching bands were only observed in the quenched and quenched-and-tempered conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Materials Response to Ultra-High Loading Rates, W. Herrman, ed., NMAB-356, National Materials Advisory Board, National Academy of Sciences, Washington, DC, 1980, pp. 129–42.

    Google Scholar 

  2. C. Zener and J.H. Hollomon:J. Appl. Phys., 1944, vol. 15, pp. 22–32.

    Article  Google Scholar 

  3. S.P. Timothy:Acta Metall., 1987, vol. 35, pp. 301–06.

    Article  CAS  Google Scholar 

  4. H.C. Rogers:Ann. Rev. Mater. Sci., 1979, vol. 9, pp. 283–311.

    Article  CAS  Google Scholar 

  5. Material Behavior under High Stress and Ultra-High Loading Rates, J. Mescall and V. Weiss, eds., Plenum Press, New York, NY, 1983.

    Google Scholar 

  6. A.J. Bedford, A.L. Wingrove, and K.R.L. Thompson:J. Austr. lnst. Met., 1974, vol. 19, p. 61.

    CAS  Google Scholar 

  7. H.C. Rogers and C.V. Shastry: inShock Waves and High-Strain-Rate Phenomena in Metals, M.A. Meyers and L.E. Murr, eds., Plenum Press, New York, NY, 1986, p. 285.

    Google Scholar 

  8. T. Pintat: inImpact Loading and Dynamic Behavior of Materials, C.Y. Chiem, H.-D. Kunze, and L.W. Meyer, eds., DGM Informations-Gesellschaft, Federal Republic of Germany, 1988, p. 737.

    Google Scholar 

  9. R.L. Woodward and N.J. Baldwin:J. Mech. Eng. Sci., 1979, vol. 21, pp. 561–68.

    Google Scholar 

  10. E.G. Zukas and R.G. McQueen:Trans. TMS-AIME, 1961, vol. 221, pp. 412–13.

    Google Scholar 

  11. High Velocity Forming of Metals, F.W. Wilson, ed., ASTM, Prentice-Hall, Englewood Cliffs, NJ, 1964.

    Google Scholar 

  12. W.C. Leslie, E. Hornbogen, and G.E. Dieter:J. Iron Steel lnst., 1962, vol. 177, pp. 622–33.

    Google Scholar 

  13. H.A. Grebe, H.-r. Pak, and M.A. Meyers:Metall. Trans. A, 1985, vol. 16A, pp. 761–75.

    CAS  Google Scholar 

  14. J. De Marre:Memorial de l’Artillerie de Marine, 1886, vol. 14.

  15. M.E. Backman and W. Goldsmith:Int. J. Eng. Sci., 1978, vol. 16, pp. 1–99.

    Article  Google Scholar 

  16. T.W. Wright: inComputational Aspects of Penetration Mechanics, J. Chandra and J.E. Flaherty, eds., Springer-Verlag, Berlin, 1983, pp. 85–106.

    Google Scholar 

  17. Shock Waves and High Strain-Rate Phenomena in Metals, M.A. Meyers and L.E. Murr, eds., Plenum Press, New York, NY, 1981, p. 1065.

    Google Scholar 

  18. D.A. Shockey, D.R. Curran, and P.S. De Carli:J. Appl. Phys., 1975, vol. 46, pp. 3766–75.

    Article  Google Scholar 

  19. R.A. Graham and G.E. Duvall:Rev. Modern Phys., 1977, vol. 49, p. 523.

    Article  Google Scholar 

  20. R.E. Rolsten and B.J. Lairmore:J. Appl. Phys., 1976, vol. 47, pp. 983–87.

    Article  Google Scholar 

  21. J.S. Rinehart and J. Pearson:Behavior of Metals under Impulsive Loads, Dover, NJ, 1965.

    Google Scholar 

  22. J. Field:Investigation of the Impact Performance of Various Glass and Ceramic Systems, Cavendish Laboratory, Cambridge, MA, U.S. Army Contract DAJA 45-85-C-0021, 1988.

    Google Scholar 

  23. J. Mescall: U.S. Army Materials Technology Laboratory, Watertown, MA, private communication, 1988.

  24. C. Wittman, M.A. Meyers, and H.-r. Pak:Metall. Trans. A, 1990, vol. 21A, pp. 707–16.

    CAS  Google Scholar 

  25. P.N. Jones and J.L. Sturges:lnst. Phys. Conf. Ser. No. 7, lnst. of Phys., 1984, pp. 541’48.

  26. A. Molinari and R.J. Clifton:J. Appl. Mech., 1987, vol. 54, p. 806.

    Article  Google Scholar 

  27. T.W. Wright:J. Mech. Phys. Solids, 1987, vol. 35, pp. 269–82.

    Article  Google Scholar 

  28. T.W. Wright and J.W. Walter:J. Mech. Phys. Solids, 1987, vol. 35, pp. 701–20.

    Article  Google Scholar 

  29. A. Marchand and J. Duffy:J. Mech. Phys. Solids, 1988, vol. 36, pp. 251–00.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This manuscript is dedicated to the memory of John Mescall, who contributed significantly to our understanding of shear bands.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meyers, M.A., Wittman, C.L. Effect of metallurgical parameters on shear band formation in low-carbon (∼0.20 Wt Pct) steels. Metall Trans A 21, 3153–3164 (1990). https://doi.org/10.1007/BF02647311

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02647311

Keywords

Navigation