Skip to main content
Log in

Quantitative models on corrosion fatigue crack growth rates in metals: Part I. Overview of quantitative crack growth models

  • Published:
Metals and Materials Aims and scope Submit manuscript

Abstract

Approaches to predict da/dN-ÀK for environmental situations; including empirical interpolative equations, linear superposition of mechanical fatigue and time-based environmental cracking, and mechanism-based models; are presented. For several material-environment systems, these models were incorporated in fracture mechanics life prediction methods, and successes have been reported in evaluating the corrosion fatigue contribution. Considerable uncertainties are, however, associated with these models. The linear superposition analysis is emphasized; material-environment systems that are severely environment-sensitive should be adequately described by this method. Direct and indirect methods exist to define time-based crack growth rates for use in linear superposition predictions of da/dN. The linear superposition approach is effective, but only for those cases where KISCC is high relative to typical flawed component stress intensity levels. Empirical curve-fit models require an extensive environmental crack growth rate data base, which are costly to develop, and are effective for interpolations but not predictions of fatigue crack growth data. Mechanism-based models for broad predictions of cycle-time dependent da/dN versus ÀK, and other variables such as frequency or hold time, are in an infant state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Methods and Models for Predicting Fatigue Crack Growth Under Random Loading (eds., J. B. Chang and C. M. Hudson),ASTM STP 748, ASTM, Philadelphia, PA (1981).

  2. NASCRAC-NASA Crack Analysis Code User’s Manual, Failure Analysis Associates Inc., Palo Alto, CA (1989).

  3. Mechanics and Physics of Crack Growth: Application to Life Prediction (eds., R. B. Thompson, R. O. Ritchie, J. B. bassani and R. H. Jones), Elsevier, London (1988).

    Google Scholar 

  4. R. P. Gangloff, R. S. Piascik, D. L. Dicus and J. C. Newman, “Fatigue Crack Propagation in Aerospace Aluminum Alloys”,Journal of Aircraft (1992).

  5. Fracture Mechanics: Perspectives and Directions, ASTM STP 1020 (eds., R. P. Wei and R. P. Gangloff), p. 233, ASTM, Philadelphia, PA (1989).

    Google Scholar 

  6. Environment Induced Cracking of Metals (eds., R. P. Gangloff and M. B. Ives), NACE, Houston, TX (1990).

    Google Scholar 

  7. Corrosion Fatigue Technology (eds., H. L. CraigJr.,, T. W. Crooker and D. W. Hoeppner),ASTM STP 642, ASTM, Philadelphia, PA (1978).

  8. D. Taylor, inFatigue Thresholds, EMAS, Warley, UK (1981).

    Google Scholar 

  9. Corrosion Fatigue: Mechanics, Metallurgy, Electrochemistry and Engineering (eds., T. W. Crooker and B. N. Leis),ASTM STP 801, ASTM, Philadelphia, PA (1984).

  10. J. J. Burke and V. Weiss, inFatigue: Environment and Temperature Effects, U.S. Army Materials Technology Laboratory, Watertown, MA (1984).

    Google Scholar 

  11. Environmentally Assisted Cracking: Science and Engineering, ASTM STP 1049 (eds., W. B. Lisagor, T. W. Crooker and B. N. Leis), p. 334, ASTM, Philadelphia, PA (1990).

    Google Scholar 

  12. R. P. Wei and J. D. Landes,Mat. Res. Stds. 9, 25 (1969).

    Google Scholar 

  13. R. J. Bucci,Ph. D. Dissertation, Lehigh University, Bethlehem, PA (1970).

    Google Scholar 

  14. P. L. Andresen, R. P. Gangloff, L. F. Coffin and F. P. Ford, inFatigue 87 (eds., R. O. Ritchie and E. A. Starke Jr., ), p. 1723, EMAS, West Midlands, England (1987).

    Google Scholar 

  15. S. J. Hudak, O. H. Burnside and K. S. Chan,J. Energy Resources Tech., ASME Trans. 107, 212 (1985).

    Article  Google Scholar 

  16. P. M. Scott, T. W. Thorpe and D. R. V. Silvester,Corrosion Sci. 23, 559 (1983).

    Article  CAS  Google Scholar 

  17. O. Vosikovsky and R. J. Cooke,Int. J. Pres. Ves. and Piping 6, 113 (1978).

    Article  Google Scholar 

  18. R. P. Gangloff and D. J. Duquette, inChemistry and Physics of Fracture (eds., R.M. Latanision and R.H. Jones), p. 612, Martinus Nijhoff Publishers BV, Netherlands (1987).

    Google Scholar 

  19. P. L. Andresen and F. P. Ford,Mater. Sci. and Eng. A103, 167 (1988).

    Article  Google Scholar 

  20. R. P. Wei, inFatigue 87 (eds., R. O. Ritchie and E. A. Starke, Jr.), p. 1541, EMAS, West Midlands, UK (1987).

    Google Scholar 

  21. F. P. Ford, D. F. Taylor, P. L. Andresen and R. G. Ballinger, “Environmentally Controlled Cracking of Stainless and Low-Alloy Steels in Light Water Reactor Environments”,EPRI Report, No. NP-5064M, EPRI, Palo Alto, CA (1987).

  22. R. H. Van Stone,Mater. Sci. and Eng. A103, 49 (1988).

    Article  Google Scholar 

  23. J. P. Gallagher and R. P. Wei, inCorrosion Fatigue, Chemistry, Mechanics and Microstructure (eds., O. Devereux, A. J. McEvily and R. W. Staehle), p. 409. NACE, Houston, TX (1972).

    Google Scholar 

  24. R. P. Wei, inFatigue Mechanisms, ASTM STP 675 (ed., J.T. Fong), p. 816, ASTM, Philadelphia, PA (1979).

    Google Scholar 

  25. T. W. Weir, G. W. Simmons, R. G. Hart and R. P. Wei,Scripta metall. 14, 357 (1980).

    Article  CAS  Google Scholar 

  26. R. P. Wei and M. Gao,Scripta metall. 17, 959 (1983).

    Article  Google Scholar 

  27. R. P. Gangloff, inProc. of Sagamore Army Materials Research Conference on Corrosion Prevention and Control 33 (eds., M. Levy and S. Isserow), p. 64, U.S. Army Materials Technology Laboratory, Watertown, MA (1987).

    Google Scholar 

  28. M. O. Spiedel, inStress Corrosion Cracking and Hydrogen Embrittlement of Iron Based Alloys (eds., J. Hochmann, J. Slater, R. D. McCright and R. W. Staehle), p. 1071, NACE, Houston, TX (1977).

    Google Scholar 

  29. M. O. Speidel, inHigh Temperature Materials in Gas Turbines (eds., P. R. Sahm and M. O. Speidel), p. 207, Elsevier, Amsterdam, Netherlands (1974).

    Google Scholar 

  30. T. Nicholas, T. Weerasooriya and N. E. Ashbaugh, inFracture Mechanics, ASTM STP 905 (eds., J. H. Underwoodet al.), p. 167, ASTM, Philadelphia, PA (1986).

    Google Scholar 

  31. T. Nicholas and T. Weerasooriya, inFracture Mechanics, ASTM STP 905 (eds., J. H. Underwoodet al), p. 155, ASTM, Philadelphia, PA (1986).

    Google Scholar 

  32. I. M. Austen and E. F. Walker, inProc. of International Conference on the Influence of Environment on Fatigue 1, p. 1, Mech. Eng., London, UK (1977).

    Google Scholar 

  33. P. M. Scott,Mem Etudes Sci. Rev. Metall., 651 (1983).

  34. R. H. Van Stone, O. C. Gooden and D. D. Krueger, “Advanced Cumulative Damage Modeling”,Final Report, AFWAL-TR-88-4146, Wright-Patterson Air Force Base, OH (1988).

    Google Scholar 

  35. D. A. Utah, inAir Force Wright Aeronautical Laboratories Report, AFWAL-TE- 80-4098, Accession No. ADA093992 (1980).

  36. T. Nicholas, G. T. Haritos and R. R. Christoff,AIAA J. Propulsion and Power 1, 131 (1985).

    Article  Google Scholar 

  37. M. L. Heil, “Crack Growth in Alloy 718 Under Thermal-Mechanical Cycling”,Ph. D. Dissertation, Air Force Institute of Technology, Wright-Patterson AFB, OH, Dec (1986).

    Google Scholar 

  38. F. P. Ford,J. Press. Ves. Tech., Trans. ASME 110, 113 (1988).

    CAS  Google Scholar 

  39. R. P. Gangloff, inEmbrittlement by the Localized Crack Environment (ed., R. P. Gangloff), p. 265, TMS-AIME, Warrendale, PA (1984).

    Google Scholar 

  40. G. Shim, Y. Nakai and R. P. Wei, inBasic Questions in Fatigue II, ASTM STP 924 (eds., R. P. Wei and R. P. Gangloff), p. 211, ASTM, Philadelphia, PA (1987).

    Google Scholar 

  41. R. P. Wei, “Corrosion Fatigue Crack Growth and Reactions with Bare Steel Surfaces”,Corrosion 89, No. 569, NACE, Houston, TX (1989).

    Google Scholar 

  42. N. J. H. Holroyd and D. Hardie,Corrosion Science 23, 527 (1983).

    Article  CAS  Google Scholar 

  43. M. Gao, P. S. Pao and R. P. Wei,Metall. Trans. A 19A, 1739 (1988).

    ADS  CAS  Google Scholar 

  44. R. P. Wei, P. S. Pao, R. G. Hart, T. W. Weir and G. W. Simmons,Metall. Trans. A 11A, 151 (1980).

    ADS  CAS  Google Scholar 

  45. I. M. Austen, W. J. Rudd and E. F. Walker, inProc. of the International Conference on Steel in Marine Structures, Comptoir des Produits Siderugiques, Paris, Paper ST 5.4 (1981).

    Google Scholar 

  46. I. M. Austen and E. F. Walker, inFatigue 84 (ed., C. J. Beevers), p. 1457, EMAS, West Midlands, England (1984).

    Google Scholar 

  47. I. M. Austen, “Quantitative Assessment of Corrosion Fatigue Crack Growth Under Variable Amplitude Loading”,British Steel Company Report BSC FR S132-8/862, Swinden Laboratories, Rotherham, England (1987).

    Google Scholar 

  48. F. P. Ford, inEmbrittlement by the Localized Crack Environment (ed., R. P. Gangloff), p. 117, TMS-AIME, Warrendale, PA (1984).

    Google Scholar 

  49. F. P. Ford and P. L. Andresen, inAdvances in Fracture Research (eds., M. Salema, K. Ravi-Chandar, D. M. R. Taplin and P. Ramo), Pergamon Press, Oxford, UK (1989).

    Google Scholar 

  50. F. P. Ford, inEnvironment Induced Cracking of Metals (eds., R. P. Gangloff and M. B. Ives), p. 139, NACE, Houston, TX (1990).

    Google Scholar 

  51. Fatigue Crack Growth Threshold Concepts (eds., D. L. Davidson and S. Suresh), TMS-AIME, Warrendale, PA (1984).

    Google Scholar 

  52. Current Research on Fatigue Cracks (eds., T. Tanaka, M. Jono and K. Komai), Society of Materials Science, Japan, Kyoto, Japan (1985).

    Google Scholar 

  53. Fatigue 87 (eds., R. O. Ritchie and E. A. Starke, Jr.), EMAS, West Midlands, UK (1987).

    Google Scholar 

  54. S. Suresh and R. O. Ritchie, inFatigue Crack Growth Threshold Concepts (ds., D. Davidson and S. Suresh), p. 227, TMS-AIME, Warrendale, PA (1984).

    Google Scholar 

  55. W. Elber, inDamage Tolerance in Aircraft Structures, ASTM STP 486, p. 230, ASTM, Philadelphia, PA (1971).

    Book  Google Scholar 

  56. Mechanics of Fatigue Crack Closure, ASTM STP 982 (eds., J. C. Newman and W. Elber), ASTM, Philadelphia, PA (1988).

    Google Scholar 

  57. S. Suresh and R. O. Ritchie,Metall. Trans. A 13A, 1627 (1982).

    ADS  Google Scholar 

  58. S. Suresh, G. F. Zaminski and R. O. Ritchie,Metall. Trans. A 12A, 1435 (1981).

    ADS  Google Scholar 

  59. S. Suresh and R. O. Ritchie,Scripta metall. 17, 575 (1983).

    Article  CAS  Google Scholar 

  60. J. L. Tzou, C. H. Hsueh, A. G. Evans and R. O. Ritchie,Acta metall. 33, 117 (1985).

    Article  CAS  Google Scholar 

  61. K. Komai, inCurrent Research on Fatigue Cracks (eds., T. Tanaka, M. Jono and K. Komai), p. 235, Society of Materials Science, Japan, Kyoto, Japan (1985).

    Google Scholar 

  62. J. Petit and A. Zeghloul, inEnvironmentally Assisted Cracking: Science and Engineering, ASTM STP 1049 (eds., W. B. Lisagor, T. W. Crooker and B. N. Leis), p. 334, ASTM, Philadelphia, PA (1990).

    Chapter  Google Scholar 

  63. S. S. Rajpathak and W. H. Hart, inEnvironmentally Assisted Cracking: Science and Engineering, ASTM STP (eds., W. B. Lisagor, T. W. Crooker and B. N. Leis), p. 425, ASTM, Philadelphia, PA (1990).

    Chapter  Google Scholar 

  64. R. O. Ritchie, S. Suresh and P. K. Liaw, inUltrasonic Fatigue (eds., J. M. wells, O. Buck, L. K. Roth and J. K. Tien), p. 443, TMS-AIME, Warrendale, PA (1982).

    Google Scholar 

  65. S. Suresh and R. O. Ritchie,Metal Science 16, 529 (1982).

    Article  CAS  Google Scholar 

  66. J. A. Todd, P. Li, G. Liu and V. Raman, inEnvironmental Degradation of Engineering Materials (eds., M. R. Louthan, R. P. McNitt and R. D. Sisson, Jr.), p. 533, Pennsylvania State University, University Park, PA (1987).

    Google Scholar 

  67. K. S. Shin and S. S. Kim, inHydrogen Effects on Material Behavior (eds., N. R. Moody and A. W. Thompson), p. 919, TMS, Warrendale, PA (1990).

    Google Scholar 

  68. S. S. Kim,Ph. D. Dissertation, Arizona State University, Tempe, AZ (1991).

    Google Scholar 

  69. R. P. Gangloff and R. O. Ritchie, inFundamentals of Deformation and Fracture (eds., B. A. Bilby, K. J. Miller and J. R. Willis), p. 529, Cambridge University Press, Cambridge, UK (1985).

    Google Scholar 

  70. K. T. Venkateswara Rao, R. S. Piascik, R. P. Gangloff and R. O. Ritchie, inProc. of Fifth Intl. Al-Li Conf. (eds., SandersJr., and E. A. Starke, Jr.), p. 955, Materials and Component Engineering Publications Ltd., Birmingham, UK (1989).

    Google Scholar 

  71. W. A. Herman, R. W. hertzberg and R. Jaccard,J. Fat. and Frac. of Eng. Mat. and Struc. 11, 303 (1988).

    Article  Google Scholar 

  72. Small Fatigue Cracks (eds., R. O. Ritchie and J. Lankford), TMS-AIME, Warrendale, PA (1986).

    Google Scholar 

  73. S. Suresh and R. O. Ritchie,Int. Metall. Rev. 29, 445 (1984).

    Google Scholar 

  74. R. P. Gangloff and R. P. Wei, inSmall Fatigue Cracks (eds., R. O. Ritchie and J. Lankford), p. 239, TMS-AIME, Warrendale, PA (1986).

    Google Scholar 

  75. R. P. Gangloff,Res. Mech. Lett. 1, 299 (1981)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, S.S., Choe, S.J. & Shin, K.S. Quantitative models on corrosion fatigue crack growth rates in metals: Part I. Overview of quantitative crack growth models. Metals and Materials 4, 1–13 (1998). https://doi.org/10.1007/BF03026059

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03026059

Key words

Navigation