Skip to main content
Log in

The sediment-water interface increment due to the complex burrows of macrofauna in a tidal flat

  • Published:
Ocean Science Journal Aims and scope Submit manuscript

Abstract

The architecture of macrofaunal burrows and the total area of the sediment-water interface created by biogenic structure were investigated in the Donggeomdo tidal flat on the west coast of Korea. Resin casting methods were applied to recover burrows of four dominant species, Macrophthalmus japonicus, Cleistostoma dilatatum, Perinereis aibuhitensis, and Periserrula leucophryna, and whole burrows within the casting area at three sites in different tidal levels.P. leucophryna excavated the largest burrow in terms of a surface area among them. In the case of whole burrow casting, the space occupied by the biogenic structure was extended into deeper and expanded more greatly at the higher tidal level. In the uppermost flat, the burrow wall surface area within sediment was more extensive than the sediment surface area. Increased oxygen supply through the extended interface could enhance the degradation rates of organic carbon and also change the pathways of degradation. Quantifying the relationship between the extended interface and mineralization rate and pathway requires more extensive study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aller, R.C. and J.Y. Aller. 1998. The Effects of biogenic irrigation intensity and solute exchange on diagenetic reaction rates in marine sediments.J. Mar. Res.,56, 905–936.

    Article  Google Scholar 

  • Atkinson, R.J.A., P.G., Moore, and P.J. Morgan. 1982. The burrow and burrowing behaviour ofMaera loveni (Crustacea: Amphipoda).J. Zool. Lond.,198, 399–146.

    Article  Google Scholar 

  • Atkinson, R.J.A. and R.D.M. Nash. 1990. Some preliminary observations on the burrows ofCallinassa subterranean (Montagu) (Decapoda, Thalassinidea) from the west coast of Scotland.J. Nat. Hist.,24, 403–413.

    Article  Google Scholar 

  • Bird, F.L. and G.C.B. Poore. 1999. Functional burrow morphology ofBiffarius arenosus (Decapoda: Callianassidae) from southern Australia.Mar. Biol.,134, 77–87.

    Article  Google Scholar 

  • Bird, F.L., P.I. Boon, and P.D. Nichols. 2000. Physicochemical and microbial properties of burrows of the deposit-feeding Thalassinideam ghost shrimpBiffarius arenosus (Decapoda: Callianassidae).Est. Coast. Shelf Sci.,51, 279–291.

    Article  Google Scholar 

  • Capehart, A.A. and C.T. Hackney. 1989. The potential role of roots and rhizomes in structuring salt-marsh benthic communities.Estuaries,12(2), 119–122.

    Article  Google Scholar 

  • Daibers, F.C. 1982. Animals of the tidal marsh. Va n Nostrand Co., New York. 422 p.

    Google Scholar 

  • Dworschak, P.C. 2002. The burrows ofCallianassa candida (Olivi 1792) andC. whiti (Sakai 1999) (Crustacea: Decapoda: Thalassinidea). p. 63–71. In:The vienna school of marine biology: A tribute to Jörg Ott, ed. by M. Bright, P.C. Dworschak, and M. Stachowitsch. Fäcultas Universitatsverlag, Wien.

  • Fossing, H., T.G. Ferdelman, and P. Berg. 2000. Sulfate reduction and methane oxidation in continental margin sediments influenced by irrigation (South-East Atlantic off Namibia).Geochim. Cosmochim. Acta,64, 897–910.

    Article  Google Scholar 

  • Furukawa, Y., A.C. Smith, J.E. Kostaka, J. Watkins, and C.R. Alexander. 2004. Quantification of macrobenthic effects on diagenesis using a multicomponent inverse model in salt marsh sediments.Limnol. Oceanogr.,49, 2058–2072.

    Google Scholar 

  • Griffis, R.B. and T.H. Suchanek. 1991. A model of burrow architecture and trophic modes in thalassinidean shrimp (Decapoda: Thalassinidea).Mar. Ecol. Prog. Ser.,79, 171–183.

    Article  Google Scholar 

  • Jørgensen, B.B. 2000. Bacterial and marine biogeochemistry. p.173–207. In:Marine geochemistry, ed. by H.D. Schulz and M. Zabel. Springer, Berlin.

    Google Scholar 

  • Kostka, J.E., A. Roychoudhury, and P. van Cappellen. 2002. Rates and controls of anaerobic microbial respiration across spatial and temporal gradients in saltmarsh sediments (Sapelo Island, GA, USA).Biogeochem.,60, 49–76.

    Article  Google Scholar 

  • Kristensen, E. 2000. Organic matter diagenesis at the oxic/anoxic interface in coastal marine sediments, with emphasis on the role of burrowing animals.Hydrobiologia,426, 1–24.

    Article  Google Scholar 

  • Lee Y.-H. and C.-H. Koh. 1994. Biogenic sedimentary structures on a Korean mud flat: Spring-neap variations.Neth. J. Sea Res.,32(1), 81–90.

    Article  Google Scholar 

  • Mok, J.S., H.Y. Cho, and J.-H. Hyun. 2005. Rates of anaerobic carbon mineralization and sulfate reduction in association with bioturbation in the intertidal mudflat of Ganghwa, Korea.J. Kor. Soc. Oceanogr. (The Sea),10, 38–46. (In Korean)

    Google Scholar 

  • Nickell, L.A. and R.J.A. Atkinson. 1995. Functional morphology of burrows and trophic modes of three thalassinidean shrimp species, and a new approach to the classification of thalassinidean burrow morphology.Mar. Ecol. Prog. Ser.,128, 181–197

    Article  Google Scholar 

  • Nielsen, O.I., E. Kristensen, and D.J. Macintosh. 2003. Impact of fiddler crabs (Uca spp.) on rates and pathways of benthic mineralization in deposited mangrove shrimp pond waste.J. Exp. Mar. Biol. Ecol.,289, 59–81.

    Article  Google Scholar 

  • Pemberton, S.G., M.J. Risk, and D.E. Buckley. 1976. Supershrimp: Deep bioturbation in the Strait of Canso, Nova Scotia.Science,192, 790–791.

    Article  Google Scholar 

  • Powers, L.W. and J.F. Cole. 1976. Temperature variation in fiddler crab microhabitat.J. Exp. Mar. Biol. Ecol.,21, 141–187.

    Article  Google Scholar 

  • Rhoads, D.C. 1974. Organism sediment relations on the muddy sea floor.Oceanogr. Mar. Biol. Ann. Rev.,12, 263–300.

    Google Scholar 

  • Rosenberg, R. and K. Ringdahl. 2005. Quantification of biogenic 3-D structures in marine sediments.J. Exp. Mar. Biol. Ecol.,326(1), 67–76.

    Article  Google Scholar 

  • Stamhuis, E.J., C.E. Schreurs, and J.J. Videler. 1997. Burrow architecture and turbative activity of the thalassinid shrimpCallianassa subterranea from the central North Sea.Mar. Ecol. Prog. Ser.,151, 155–163.

    Article  Google Scholar 

  • Swinbanks, D.D. and J.L. Muternauer. 1987. Burrow distribution of Thalassinidean shrimp on a Fraser delta tidal flat, British Columbia.J. Paleontol.,61(2), 315–332.

    Google Scholar 

  • Ziebis, W., S. Forster, M. Huettel, and B.B. Jørgensen. 1996. Complex burrows of the mud shrimpCallianassa truncata and their geochemical impact in the sea bed.Nature,382, 619–622.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bon Joo Koo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koo, B.J., Kwon, K.K. & Hyun, JH. The sediment-water interface increment due to the complex burrows of macrofauna in a tidal flat. Ocean Sci. J. 40, 221–227 (2005). https://doi.org/10.1007/BF03023522

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03023522

Key words

Navigation