Skip to main content
Log in

Isoflurane preserves central nervous system blood flow during intraoperative cardiac tamponade in dogs

L’isoflurane maintient le débit sanguin du système nerveux central pendant une tamponnade péricardique peropératoire chez des chiens

  • Published:
Canadian Journal of Anesthesia Aims and scope Submit manuscript

Abstract

Purpose

The present study tested the hypothesis that the anesthetic technique will influence the changes in regional blood flow (RBF) during intraoperative cardiac tamponade.

Methods

Twenty-four dogs were divided into three equal groups: Group 1, anesthesia was maintained with ketamine (25 mg· kg−1 · hr−1); Group II, with fentanyl and midazolam (F-M; 10 μg · kg−1 · hr−1 and 0.5 mg· kg−1 · hr−1, respectively); Group III with I minimum alveolar concentration (MAC; 1.4%) isoflurane. Radioactive microspheres were used to measure RBF in myocardium, brain, spinal cord, abdominal viscera, skeletal muscle and skin. Cardiac output (CO) was measured by thermodilution and arterial pressure with a catheter situated in the thoracic aorta. Catheters were introduced into the pericardial cavity to infuse isotonic saline and to measure intrapericardial pressure (IPP). Measurements were obtained under control conditions and during tamponade, as defined by an increase in IPP sufficient to reduce mean arterial pressure by 40%.

Results

Tamponade caused decreases in CO and RBF that were comparable under the three anesthetics, except that RBF in sub-cortical regions of the brain and in the spinal cord were maintained under isoflurane but decreased under ketamine or F-M.

Conclusions

In dogs, intraoperative cardiac tamponade caused comparable changes in RBF under the different anesthetic techniques except that autoregulation was effective in maintaining RBF within the central nervous system only under isoflurane anesthesia. Our findings provide no compelling reason to recommend one anesthetic over the others for maintenance of anesthesia in situations with increased risk for intraoperative cardiac tamponade. However, they cannot be extrapolated to anesthesia induction in the presence of cardiac tamponade.

Résumé

Objectif

Tester l’hypothèse voulant que la technique anesthésique agisse sur les changements de débit sanguin régional (DSR) pendant une tamponnade péricardique peropératoire.

Méthode

Vingt-quatre chiens ont été répartis en trois groupes égaux : Groupe I, anesthésie maintenue avec kétamine (25 mg· kg−1 · h−1) ; Groupe II, avec fentanyl et midazolam (F-M; 10 μg · kg−1 · h−1 et 0,5 mg · kg−1 · h−1, respectivement); Groupe III avec une concentration alvéolaire minimale de 1 (CAM; 1,4 %) d’isoflurane. Des microsphères radioactives ont servi à mesurer le DSR dans le myocarde, le cerveau, la moelle épinière, les viscères abdominales, les muscles squelettiques et la peau. Le débit cardiaque (DC) a été mesuré par thermodilution et la tension artérielle avec un cathéter placé dans l’aorte thoracique. Les cathéters ont été introduits dans la cavité péricardique pour perfuser une solution saline isotonique et mesurer la pression intrapéricardique (PIP). Les mesures ont été faites dans des conditions témoins et pendant la tamponnade, tel que définie par une hausse de la PIP suffisante pour réduire la tension artérielle moyenne de 40 %.

Résultats

La tamponnade a causé des baisses du DC et du DSR qui étaient comparables avec les trois anesthésiques, sauf que le DSR des régions souscorticales du cerveau et de la moelle épinière a été maintenu avec l’isoflurane, mais a diminué avec la kétamine ou le mélange F-M.

Conclusion

Chez des chiens, la tamponnade péricardique peropératoire a causé des changements comparables du DSR avec différents anesthésiques, mais l’autorégulation a été efficace en maintenant le DSR à l’intérieur du système nerveux central avec l’isoflurane seulement. Nos résultats ne permettent pas de recommander impérativement un anesthésique en particulier pour maintenir l’anesthésie dans des situations de risque accru de tamponnade péricardique peropératoire. Cependant, ils ne peuvent être extrapolés à l’induction de l’anesthésie en présence d’une tamponnade péricardique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shanewise JS, Hug CC Jr. Anesthesia for adult cardiac surgery.In: Miller RD (Ed.). Anesthesia, 5th ed. New York: Churchill Livingstone Inc.; 2000: 1753–804.

    Google Scholar 

  2. Bernath GA, Cogswell TL, Hoffman RG, Klopfenstein HS. Influences on the distribution of blood flow during cardiac tamponade in the conscious dog. Circ Res 1987; 60: 72–81.

    Article  CAS  PubMed  Google Scholar 

  3. Altura BM, Altura BT, Carella A, Turlapaty PD, Weinberg J. Vascular smooth muscle and general anesthetics. Fed Proc 1980; 39: 1584–91.

    CAS  PubMed  Google Scholar 

  4. Warren TM, Stoelting RK. Hemodynamic effects of general anesthetics.In: Altura BM, Halevy S (Eds). Cardiovascular Actions of Anesthetics and Drugs Used in Anesthesia. Basel: Karger; 1986: 3–50.

    Google Scholar 

  5. Seyde WC, Longnecker DE. Anesthetic influences on regional hemodynamics in normal and hemorrhaged rats. Anesthesiology 1984; 61: 686–98.

    Article  CAS  PubMed  Google Scholar 

  6. Crystal GJ, Salem MR. Myocardial and systemic responses to arterial hypoxemia during cardiac tamponade. Am J Physiol 1989; 257(3 Pt 2): H726–33.

    CAS  PubMed  Google Scholar 

  7. Brown DV, O’Connor CJ, Tuman KJ. Emergency situations.In: Estafanous FG, Barash PG, Reves JG (Eds). Cardiac Anesthesia. Principles and Clinical Practice, 2nd ed. Philadelphia: Lippincott Williams & Wilkins; 2001: 857–92.

    Google Scholar 

  8. White PF, Way WL, Trevor AJ. Ketamine-its pharmacology and therapeutic uses. Anesthesiology 1982; 56: 119–36.

    Article  CAS  PubMed  Google Scholar 

  9. Jiha JG, Weinberg GL, Laurito CE. Intraoperative cardiac tamponade after central venous cannulation. Anesth Analg 1996; 82: 664–5.

    CAS  PubMed  Google Scholar 

  10. Swanton BJ, Keane D, Vlahakes GJ, Streckenbach SC. Intraoperative transesophageal echocardiograophy in the early detection of acute tamponade after laser extraction of a defibrillator lead. Anesth Analg 2003; 97: 654–6.

    Article  PubMed  Google Scholar 

  11. Pagel PS, Kampine JP, Schmeling WT, Warltier DC. Ketamine depresses myocardial contractility as evaluated by the preload recruitable stroke work relationship in chronically instrumented dogs with autonomic nervous system blockade. Anesthesiology 1992; 76: 564–72.

    Article  CAS  PubMed  Google Scholar 

  12. Crystal GJ, Zhou X, Halim AA, Alam S, El-Orbany M, Salem MR. Nitric oxide does not modulate whole body oxygen consumption in anesthetized dogs. J Appl Physiol 1999; 86: 1944–9.

    CAS  PubMed  Google Scholar 

  13. Kazama T, Ikeda K. Comparison of MAC and the rate of rise of alveolar concentration of sevoflurane with halothane and isoflurane in the dog. Anesthesiology 1988; 68: 435–7.

    Article  CAS  PubMed  Google Scholar 

  14. Zar JH. Biostatistical Analysis. Englewood Cliffs, NJ: Prentice-Hall Inc.; 1974.

    Google Scholar 

  15. Crystal GJ, Bedran de Castro MT, Downey HE. Regional hemodynamic responses to nicotine in conscious and anesthetized dogs: comparative effects of pentobarbital and chloralose. Proc Soc Exp Biol Med 1989; 191: 396–402.

    Article  CAS  PubMed  Google Scholar 

  16. Smith G, Thorburn J, Vance JP, Brown DM. The effects of ketamine on the canine coronary circulation. Anaesthesia 1979; 34: 555–61.

    Article  CAS  PubMed  Google Scholar 

  17. Blaise GA, Witzeling TM, Sill JC, Vinay P, Vanhoutte PM. Fentanyl is devoid of major effects on coronary vasoreactivity and myocardial metabolism in experimental animals. Anesthesiology 1990; 72: 535–41.

    Article  CAS  PubMed  Google Scholar 

  18. Marty J, Nitenberg A, Blanchet E, Zouioueche S, Desmonts JM. Effects of midazolam on the coronary circulation in patients with coronary artery disease. Anesthesiology 1986; 64: 206–10.

    Article  CAS  PubMed  Google Scholar 

  19. Crystal GJ, Kim SJ, Salem MR, Khoury E, Gurevicius J. Nitric oxide does not mediate coronary vasodilation by isoflurane. Anesthesiology 1994; 81: 209–20.

    Article  CAS  PubMed  Google Scholar 

  20. Oren RE, Rasool NA, Rubinstein EH. Effect of ketamine on cerebral cortical blood flow and metabolism in rabbits. Stroke 1987; 18: 441–4.

    Article  CAS  PubMed  Google Scholar 

  21. Fukuda S, Murakawa T, Takeshita H, Toda N. Direct effects of ketamine on isolated canine cerebral and mesenteric arteries. Anesth Analg 1983; 62: 553–8.

    Article  CAS  PubMed  Google Scholar 

  22. Michenfelder JD, Theye RA. Effects of fentanyl, droperidol, and innovar on canine cerebral metabolism and blood flow. Br J Anaesth 1971; 43: 630–5.

    Article  CAS  PubMed  Google Scholar 

  23. Eleisher JE, Milde JH, Moyer TP, Michenfelder JD. Cerebral effects of high-dose midazolam and subsequent reversal with Ro 15-1788 in dogs. Anesthesiology 1988; 68: 234–42.

    Article  Google Scholar 

  24. Brian JE Jr, Traystman RJ, McPherson RW. Changes in cerebral blood flow over time during isoflurane anesthesia in dogs. J Neurosurg Anesthesiol 1990; 2: 122–30.

    Article  PubMed  Google Scholar 

  25. Cogswell TL, Bernath GA, Raff H, Hoffmann RG, Klopfenstein HS. Total peripheral resistance during cardiac tamponade: adrenergic and angiotensin roles. Am J Physiol 1986; 251: R916–22.

    CAS  PubMed  Google Scholar 

  26. McPherson RW, Traystman RJ. Effects of isoflurane on cerebral autoregulation in dogs. Anesthesiology 1988; 69: 493–9.

    Article  CAS  PubMed  Google Scholar 

  27. Mattila I, Takkunen O, Mattila P, Harjula A, Mattila S, Merikallio E. Cardiac tamponade and different modes of artificial ventilation. Acta Anaesthesiol Scand 1984; 28: 236–40.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George J. Crystal.

Additional information

This investigation was funded by the Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, Illinois, USA.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crystal, G.J., Metwally, A.A. & Salem, M.R. Isoflurane preserves central nervous system blood flow during intraoperative cardiac tamponade in dogs. Can J Anesth 51, 1011–1017 (2004). https://doi.org/10.1007/BF03018490

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03018490

Keywords

Navigation