Skip to main content
Log in

Recent advances in99mTc radiopharmaceuticals

  • Review
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

99mTc radiopharmaceuticals play an important role in widespread applications of nuclear medicine. When99mTc radiopharmaceuticals first came into use, major efforts were directed toward the development of99mTc radiopharmaceuticals for bone imaging and for the excretory functions of the liver and kidneys. In the past 20 years, a significant advance has been made in technetium chemistry, which provided99mTc radiopharmaceuticals for assessment of regional cerebral and myocardial blood flow. Recent efforts have been directed toward the design of99mTc-labeled compounds for estimating receptor or transporter functions. A number of bifunctional chelating agents that provide99mTc labeled proteins and peptides of highin vivo stability with high radiochemical yields have also been developed. More recently, organometallic technetium and rhenium compounds have been introduced as another class of99mTc radiopharmaceutical design. In this manuscript recent progress in99mTc radiopharmaceuticals is reviewed with the major emphasis laid on key innovations in this field to provide the99mTc radiopharmaceuticals available today.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yokoyama A, Arano Y, Hosotani T, Yamada A, Horiuchi K, Yamamoto K, et al. Introducing new99mTc-bifunctional radiopharmaceutical containing dithiosemicarbazone chelate group.The Third World Congress in Nuclear Medicine and Biology, Paris; Pergamon Press, 1982: 1097–1100.

    Google Scholar 

  2. Yokoyama A, Yamada A, Arano Y, Horiuchi K, Yamamoto K, Torizuka K. Tc-99m bifunctional radiopharmaceutical from a glucose derivatives: A potential agent for brain study. In: Deutsch E, Nicolini M, Wagner Jr H, eds.Technetium in Chemistry and Nuclear Medicine. New York: Raven Press, 1983; 1051–1053.

    Google Scholar 

  3. Yokoyama A, Hosotani T, Arano Y, Horiuchi K, Yamamoto K, Torizuka K. Development of Tc-99m-phenylalkylamine bifunctional radiopharmaceuticals for myocardial imaging. In: Deutsch E, Nicolini M, Wagner Jr H, eds.Technetium in Chemistry and Nuclear Medicine, New York: Raven Press, 1983; 1067–1069.

    Google Scholar 

  4. Davison A, Jones AG, Orvig C, Sohn M. A new class of oxotechnetium (5+) chelate complexes containing a TcON2S2 core.Inorg Chem 1981; 20: 1629–1632.

    Article  CAS  Google Scholar 

  5. Abrams MJ, Davison A, Jones AG, Costello CE, Pang H. Synthesis and Characterization of hexakis(alkylisocyanide) and hexakis(arylisocyanide) complexes of Technetium(I).Inorg Chem 1983; 22: 2798–2800.

    Article  CAS  Google Scholar 

  6. Baldas J, Bonnyman J, Pojer PM, Williams GA. Synthesis and structure of bis(diethyldithiocarbamato)nitridotechnetium (V): A technetium-nitrogen triple bond.J Chem Soc Dalton 1981; 1798–1981.

  7. Zuckman SA, Freeman GM, Troutner DE, Volkert WA, Holmes RA, Derveer DGV, et al. Preparation and X-ray structure of trans-dioxo(1,4,8,11-tetraazacyclotetradecane) technetium(V) perchlorate hydrate.Inorg Chem 1981; 20: 2286–2289.

    Article  Google Scholar 

  8. Kung HF, Molnar M, Billings J, Wicks R, Blau M. Synthesis and biodistribution of neutral lipid-soluble Tc-99m complexes that cross the blood-brain barrier.J Nucl Med 1984; 25: 326–332.

    PubMed  CAS  Google Scholar 

  9. Arano Y., Yabuki M, Yahata T, Horiuchi K, Yokoyama A. Stable and lipophilic technetium-99m dithiosemicarbazone complexes with 5-6-5 membered chelate ring structure.Chem Pharm Bull Tokyo 1990; 38: 3099–3101.

    PubMed  CAS  Google Scholar 

  10. Arano Y, Yabuki M, Jones AG, Yokoyama A. Characterization of technetium-99m complexes of pentane-2,4-dione bis(N-methylthiosemicarbazone).Chem Pharm Bull Tokyo 1991; 39: 104–107.

    PubMed  CAS  Google Scholar 

  11. Volkert WA, Hoffman TJ, Seger RM, Troutner DE, Holmes RA.99mTc-propylene amine oxime (99mTc-PnAO); a potential brain radiopharmaceutical.Eur J Nucl Med 1984; 9: 511–516.

    Article  PubMed  CAS  Google Scholar 

  12. Winchell HS, Baldwin RM, Lin TH. Development of I-123 labeled amines for brain studies: Localization of I-123 Iodophenylalkylamines in rat brain.J Nucl Med 1980; 21: 940–946.

    PubMed  CAS  Google Scholar 

  13. Kung HF, Tramposch KM, Blau M. A new brain perfusion imaging agent: [I-123]HIPDM:N,N,N″-trimethyl-N′-(2-hydroxy-3-amethyl-5-iodobenzyl)-1,3-propanediamine.J Nucl Med 1983; 24: 66–72.

    PubMed  CAS  Google Scholar 

  14. Epps LA, Burns HD, Lever SZ, Goldfarb H, Wagner Jr H. Brain imaging agents: Synthesis and characterization of (N-pipeperidylethyl)hexamethyl diaminodithiolate oxo technetium (V) complexes.Appl Radiat Isot 1987; 38: 661–334.

    CAS  Google Scholar 

  15. Walovitch RC, Hill TC, Garrity ST, Cheesman EH, Burgess BA, O'Leary DH et al. Characterization of technetium-99m-L,L-ECD for brain perfusion imaging, Part 1: pharmacology of technetium-99m ECD in nonhuman primates.J Nucl Med 1989; 30: 1892–1901.

    PubMed  CAS  Google Scholar 

  16. Murmann RK, The interaction of 2-methyl-2-amino-3-butanone oxime with some transition metal.J Amer Chem Soc 1957; 70: 521–526.

    Article  Google Scholar 

  17. Fair K, Troutner DE, Schiemper EO, Muramann RK, Hoppe ML. Oxo[3,3′-(1,3-propanediyldiimino)bis(3-methyl-2-butanone oximato)(3−)-N,N′,N″,N′″technetium(V), [TcO(C13H25O2].Acta Cryst 1984; C40: 1544–1546.

    Article  Google Scholar 

  18. Neirinckx RD, Canning LR, Piper IM, Nowotink DP, Pickett RD, Holmes RA, et al. Technetium-99m d.1-HMPAO: A new radiopharmaceutical for SPECT imaging of regional cerebral blood flow.J Nucl Med 1987; 28: 191–202.

    PubMed  CAS  Google Scholar 

  19. Neirinckx RD, Burke JF, Harrison RC, Forster AM, Andersen AR, Lassen NA. The retention mechanism of technetium-99m-HM-PAO: intracellular reaction with glutathione.J Cereb Blood Flow Metab 1988; 8: S4–12.

    Google Scholar 

  20. Morgan GF, Deblaton M, Vandenbroeck P, Bastin B, Pirotte R, Michel P, et al. Synthesis and biological studies of neutral technetium-(V) complexes containing NNOS donor sets.Nucl Med Biol 1992; 19: 65–72.

    CAS  Google Scholar 

  21. Morgan GF, Deblaton M, Clemens P, Broeck PVD, Bossuyt A, Thornback JR. Technetium-99m-MRP20, a potential brain perfusion agent:In vivo biodistribution and SPECT studies in non-primate animals.J Nucl Med 1991; 32: 500–505.

    PubMed  CAS  Google Scholar 

  22. Mastrostamatis SG, Papadopoulos MS, Pirmettis IC, Paschali E, Varvarigou AD, Stassinopoulou CI, et al. Tridentate ligands containing the SNS donor atom set as a novel backbone for the development of technetium brainimaging agents.J Med Chem 1994; 37: 3212–3218.

    Article  PubMed  CAS  Google Scholar 

  23. Pirmettis IC, Papadopoulos MS, Chiotellis E. Novel99mTc aminobisthiolato/monothiolato “3+1” mixed ligand complexes: structure-activity relationships and preliminaryin vivo validation as brain blood flow imaging agents.J Med Chem 1997; 40: 2539–2546.

    Article  PubMed  CAS  Google Scholar 

  24. Pelecanou M, Piemettis CC, Nock BA, Papadopoulos M, Chiotellis E., Stassinopoulou CI. Interation of [ReO(SNS)(S)] and [99mTcO(SNS)(S)] mixed ligand complexes with glutathione: isolation and characterization of the product.Inorg Chim Acta 1998; 281: 148–152.

    Article  CAS  Google Scholar 

  25. Nock BA, Maina T, Yannoukakos D, Pirmettis IC, Papadopoulos MS, Chiotellis E. Glutathione-mediated metabolism of technetium-99m SNS/S mixed ligand complexes: a proposed mechanism of brain retention.J Med Chem 1999; 42: 1066–1075.

    Article  PubMed  CAS  Google Scholar 

  26. Deutsch E, Glavan KA, Sodd VJ, Nishiyama H, Ferguson DL, Lukes SJ. Cationic Tc-99m complexes as potential myocardial imaging agents.J Nucl Med 1981; 22: 897–907.

    PubMed  CAS  Google Scholar 

  27. Nishiyama H, Adolph RJ, Deutsch E, Sodd VJ, Libson K, Gerson MC, et al. Effect of coronary blood flow on uptake and washout of Tc-99m DMPE and Tl-201.J Nucl Med 1982; 23: 1102–1110.

    PubMed  CAS  Google Scholar 

  28. Vanderheyden JL, Heeg MJ, Deutsch E. Comparison of the chemical and biological properties of trans-(Tc(DMPE)2Cl2)+ and 1,2-bis(dimethylphosphino) ethane. Single-crystal structural analysis of trans-(Re(DMPE)2Cl2) PF6.Inorg Chem 1985; 24: 1666–1673.

    Article  CAS  Google Scholar 

  29. Jurisson S, Dancey KP, McPartlin M, Tasker PA, Deutsch E. Synthesis, characterization, and electrochemical properties of technetium complexes containing both tetradentate schiff base and monodentate tertiary phosphine ligands: Single-crystal structure of trans-(N,N′-ethylenebis(acetylacetone iminato)bis(triphenyl-phosphine) technetium (III) hexafluorophosphate.Inorg Chem 1984; 23: 4743–4749.

    Article  CAS  Google Scholar 

  30. Gerson MC, Lukes J, Deutsch E, Biniakiewicz D, Washburn LC, Elgazzar AH, et al. Comparison of technetium-99m-Q3 and thallium-201 for detection of coronary artery disease in humans.J Nucl Med 1994; 35: 580–586.

    PubMed  CAS  Google Scholar 

  31. Vanderheyden JL, Ketering AR, Libson K, Heeg ZJ, Roecker L, Motz P, et al. Synthesis and characterization of cationic technetium complexes of 1,2-bis(dimethyl-phosphino)ethane (DMPE). Structure determinations of trans-[TcV(DMPE)2(OH)(O)] (F3CSO3)2, trans-[TcIII(DMPE)2Cl2]F3CSO3, and [TcI(DMPE)3]+ using X-ray diffration, EXAPS, and99Tc NMR.Inorg Chem 1984; 23: 3184–3191.

    Article  CAS  Google Scholar 

  32. Kelly JD, Forster AM, Higley B, Archer CM, Booker FS, Canning LR, et al. Technetium-99m-tetrofosmin as a new radiopharmaceutical for myocardial perfusion imaging.J Nucl Med 1993; 34: 222–227.

    PubMed  CAS  Google Scholar 

  33. Higley B, Smith FW, Smith T, Gemmell HG, Das Gupta P, Gvozdanovic DV, et al. Technetium-99m-1,2-bis[bis(2-ethoxyethyl) phosphino]ethane: human biodistribution, dosimetry and safety of a new myocardial perfusion imaging agent.J Nucl Med 1993; 34: 30–38.

    PubMed  CAS  Google Scholar 

  34. Jones AG, Davison A, LaTegola MR, Brodack JW, Orvig C, Sohn M, et al. Chemical andin vivo studies of the anion oxo[N,N′-ethylenebis(2-mercaptoacetimido)technetate (V).J Nucl Med 1982; 23: 801–809.

    PubMed  CAS  Google Scholar 

  35. Holman BL, Jones AG, Lister James J, Davison A, Abrams MJ, Kirshenbaum JM, et al. A new Tc-99m-labeled myocardial imaging agent, hexakis(t-butylisonitrile)-technetium(I) [Tc-99m TBI]: initial experience in the human.J Nucl Med 1984; 25: 1350–1355.

    PubMed  CAS  Google Scholar 

  36. Piwnica-Worms D, Kronauge JF, Chiu ML. Enhancement by tetraphenylborate of technetium-99m-MIBI uptake kinetics and accumulation in cultured chick myocardial cells.J Nucl Med 1991; 32: 1992–1999.

    PubMed  CAS  Google Scholar 

  37. Piwnica-Worms D, Kronauge JF, Chiu ML. Uptake and retention of hexakis (2-methoxyisobutyl isonitrile) technetium(I) in cultured chick myocardial cells. Mitochondrial and plasma membrane potential dependence.Circulation 1990; 82: 1826–1838.

    PubMed  CAS  Google Scholar 

  38. Chiu ML, Kronauge JF, Piwnica-Worms D. Effect of mitochondrial and plasma membrane potentials on accumulation of hexakis (2-methoxyisobutylisonitrile) technetium(I) in cultured mouse fibroblasts.J Nucl Med 1990; 31: 1646–1653.

    PubMed  CAS  Google Scholar 

  39. Pasqualini R, Duatti A, Bellande E, Comazzi V, Brucato V, Hoffschir D, et al. Bis(dithiocarbamato) nitrido technetium-99m radiopharmaceuticals: a class of neutral myocardial imaging agents.J Nucl Med 1994; 35: 334–341.

    PubMed  CAS  Google Scholar 

  40. Ghezzi C, Fagret D, Arvieux CC, Mathieu JP, Bontron R, Pasqualini R, et al. Myocardial kinetics of TcN-NOET: a neutral lipophilic complex tracer of regional myocardial blood flow.J Nucl Med 1995; 36: 1069–1077.

    PubMed  CAS  Google Scholar 

  41. Fagret D, Marie PY, Brunotte F, Giganti M, Le Guludec D, Bertrand A, et al. Myocardial perfusion imaging with technetium-99m-Tc NOET: comparison with thallium-201 and coronary angiography.J Nucl Med 1995; 36: 936–943.

    PubMed  CAS  Google Scholar 

  42. Uccelli L, Giganti M, Duatti A, Bolzati C, Pasqualini R, Cittanti C, et al. Subcellular distribution of technetium-99m-N-NOEt in rat myocardium.J Nucl Med 1995; 36: 2075–2079.

    PubMed  CAS  Google Scholar 

  43. Hosotani T, Yokoyama A, Arano Y, Horiuchi K, Saji H, Torizuka K. Search for Tc-99m labeled DTS bifunctional radiopharmaceutical: role of functional groups in myocardial accumulation.Appl Radiat Isot 1986; 37: 505–511.

    Article  CAS  Google Scholar 

  44. Hosotani T, Yokoyama A, Arano Y, Horiuchi K, Saji H, Torizuka K. Design of bifunctional radiopharmaceutical for the development of Tc-99m complex for myocardial imaging agents.Nucl Med Biol 1986; 13: 606–609.

    Google Scholar 

  45. Hosotani T, Yokoyama A, Arano Y, Horiuchi K, Wasaki H, Saji H, et al. In the procurement of a neutral and compact monomeric complex of dithiosemicarbazone (DTS) derivative: Tc-99m-KTS.Int J Nucl Med Biol 1985; 12: 431–437.

    Google Scholar 

  46. Madras BK, Jones AG, Mahmood A, Zimmerman RE, Garada B, Holman BL, et al. Technepine: a high-affinity 99m-technetium probe to label the dopamine transporter in brain by SPECT imaging.Synapse 1996; 22: 239–246.

    Article  PubMed  CAS  Google Scholar 

  47. Kung HF, Kim H-J, Kung M-P, Meegalla SK, Plösl K, Lee H-K. Imaging of dopamine transporters in humans with technetium-99m TRODAT-1.Eur J Nucl Med 1996; 23: 1527–1530.

    Article  PubMed  CAS  Google Scholar 

  48. Huang WS, Lin SZ, Lin JC, Wey SP, Ting G, Liu RS. Evaluation of early-stage Parkinson’s disease with99mTc-TRODAT-1 imaging.J Nucl Med 2001; 42: 1303–1308.

    PubMed  CAS  Google Scholar 

  49. Dizio JP, Anderson CJ, Davison A, Ehrhardt GJ, Carlson KE, Welch MJ, et al. Technetium-labeled and rheniumlabeled progestins—synthesis, receptor binding andin vivo distribution of an 11 beta-substituted progestin labeled with technetium-99 and rhenium-186.J Nucl Med 1992; 33: 558–569.

    PubMed  CAS  Google Scholar 

  50. DiZio JP, Fiaschi R, Davison A, Jones AG, Katzenellenbogen JA. Progestin-rhenium complexes: metal-labeled steroids with high receptor binding affinity, potential receptor-directed agents for diagnostic imaging or therapy.Bioconjugate Chem 1991; 2: 353–366.

    Article  CAS  Google Scholar 

  51. O'Neil JP, Carlson KE, Anderson CJ, Welch MJ, Katzenellenbogen JA. Progestin radiopharmaceuticals labeled with technetium and rhenium: synthesis, binding affinity, andin vivo distribution of a new progestin N2S2-metal conjugate.Bioconjugate Chem 1994; 5: 182–193.

    Article  Google Scholar 

  52. Yamamura N, Magata Y, Arano Y, Kawaguchi T, Ogawa K, Konishi J, et al. Technetium-99m-labeled mediumchain fatty acid analogues metabolized by beta-oxidation: radiopharmaceutical for assessing liver function.Bioconjugate Chem 1999; 10: 489–495.

    Article  CAS  Google Scholar 

  53. Lever SZ, Baidoo KE, Mahmood A, Matsumura K, Scheffel U, Wagner Jr H. Novel technetium ligands with affinity for the muscarinic cholinergic receptor.Nucl Med Biol 1994; 21: 157–164.

    Article  PubMed  CAS  Google Scholar 

  54. Chi DY, Katzenellenbogen JA. Selective formation of heterodimeric bis-bidentate aminothiol-oxometal complexes of rhenium(V).J Am Chem Soc 1993; 115: 7045–7046.

    Article  CAS  Google Scholar 

  55. Chi DY, Oneil JP, Anderson CJ, Welch MJ, Katzenellenbogen JA. Homodimeric and heterodimeric bis(amino thiol) oxometal complexes with rhenium(V) and technetium(V)—control of heterodimeric complex formation and an approach to metal complexes that mimic steroid hormones.J Med Chem 1994; 37: 928–937.

    Article  PubMed  CAS  Google Scholar 

  56. Johannsen B, Scheunemann M, Spies H, Brust P, Wober J, Syhre R, et al. Technetium(V) and rhenium(V) complexes for 5-HT2A serotonin receptor binding: structure-affinity considerations.Nucl Med Biol 1996; 23: 429–438.

    Article  PubMed  CAS  Google Scholar 

  57. Meegalla S, Plossl K, Kung MP, Chumpradit S, Stevenson DA, Frederick D, et al. Tc-99m-labeled tropanes as dopamine transporter imaging agents.Bioconjugate Chem 1996; 7: 421–429.

    Article  CAS  Google Scholar 

  58. Skaddan MB, Katzenellenbogen JA. Integrated “3+1” oxorhenium(V) complexes as estrogen mimics.Bioconjugate Chem 1999; 10: 119–129.

    Article  CAS  Google Scholar 

  59. Francis MD, Slough CL, Tofe AJ. Factors affecting uptake and retention of technetium-99m-diphosphonate and 99m-pertechnetate in osseous, connective and soft tissues.Calcif Tissue Res 1976; 20: 303–311.

    Article  PubMed  CAS  Google Scholar 

  60. Silberstein EB, Francis MD, Tofe AJ, Slough CL. Distribution of99mTc-Sn diphosphonate and free99mTc-pertechnetate in selected soft and hard tissues.J Nucl Med 1975; 16: 58–61.

    PubMed  CAS  Google Scholar 

  61. Subramanian G, McAfee JG. A new complex of99mTc for skeletal imaging.Radiology 1971; 98: 192–196.

    Google Scholar 

  62. Libson K, Deutsch E, Barnett BL. Structural characterization of a99Tc-diphosphonate complex. Implications for the chemistry of99mTc skeletal imaging agents.J Am Chem Soc 1980; 102: 2476–2478.

    Article  CAS  Google Scholar 

  63. Jurisson SS, Benedict JJ, Elder RC, Deutsch E. Calcium affinity of coordinated diphosphonate ligands. Singlecrystal structure of [(en)2Co(O2P(OH)CH2P(OH)O2]ClO4 H2O. Implication for the chemistry of technetium-99m-diphosphonate skeletal imaging agents.Inorg Chem 1983; 22: 1332–1338.

    Article  CAS  Google Scholar 

  64. Israel O, Keidar Z, Rubinov R, Iosilevski G, Frenkel A, Kuten A, et al. Quantitative bone single-photon emission computed tomography for prediction of pain relief in metastatic bone disease treated with rhenium-186 etidronate.J Clin Oncol 2000; 18: 2747–2754.

    PubMed  CAS  Google Scholar 

  65. Kucuk NO, Ibis E, Aras G, Baltaci S, Ozalp G, Beduk Y, et al. Palliative analgesic effect of Re-186 HEDP in variour cancer patients with bone metastases.Ann Nucl Med 2000; 14: 239–245.

    Article  PubMed  CAS  Google Scholar 

  66. Liepe K, Franke WG, Kropp J, Koch R, Runge R, Hliscs R. Comparison of rhenium-188, rhenium-186-HEDP and strontium-89 in palliation of painful bone metastases.Nuklearmedizin 2000; 39: 146–151.

    PubMed  CAS  Google Scholar 

  67. Deklerk JMH, Vanhetschip AD, Zonnenberg BA, Vandijk A, Quirijnen JMSP, Blijham GH, et al. Phase I study of rhenium-186-HEDP in patients with bone metastases originating from breast cancer.J Nucl Med 1996; 37: 244–249.

    CAS  Google Scholar 

  68. Glickson JD, Pitner TP, Webb J, Gams RA. Hydrogen-1 and gallium-71 nuclear magnetic resonance study of gallium citrate in aqueous solution.J Am Chem Soc 1975; 97: 1679–1683.

    Article  CAS  Google Scholar 

  69. Yokoyama A, Hata N, Horiuchi K, Masuda H, Saji H, Ohta H, et al. The design of a pentavalent99mTc-dimercaptosuccinate complex as a tumor imaging agent. IntJ Nucl Med Biol 1985; 12: 273–279.

    Article  PubMed  CAS  Google Scholar 

  70. Horiuchi K, Yokoyama A, Endo K, Torizuka K. Tc(V)-DMS tumor imaging agent: Tc-complex dissociation equilibra, a relevant factor intumor localization. In: Nicolini M, Bandoli G, Mazzi U, eds.Technetium in Chemistry and Nuclear Medicine, Verona; Cortinal International, 1986; 155–159.

    Google Scholar 

  71. Horiuchi K, Yomoda I, Ohta H, Endo K, Yokoyama A. Search for polynuclear pentavalent technetium complex of dimercaptosuccinic acid [Tc(V)-DMS] tumour localization mechanism. I. medullary thyroid carcinoma animal model.Eur J Nucl Med 1991; 18: 796–800.

    Article  PubMed  CAS  Google Scholar 

  72. Horiuchi K, Saji H, Yokoyama A. pH sensitive properties of Tc(V)-DMS: analytical andin vitro cellular studies.Nucl Med Biol 1998; 25: 689–695.

    Article  PubMed  CAS  Google Scholar 

  73. Horiuchi K, Saji H, Yokoyama A. Tc(V)-DMS tumor localization mechanism: a pH-sensitive Tc(V)-DMS-enhanced target/nontarget ratio by glucose-mediated acidosis.Nucl Med Biol 1998; 25: 549–555.

    Article  PubMed  CAS  Google Scholar 

  74. Shinozaki T, Hirano T, Watanabe H, Aoki J, Takagishi K. Tc-99m(V) dimercaptosuccinic acid scintigraphy for bone and soft tissue lesions.Clin Nucl Med 2000; 25: 637–640.

    Article  PubMed  CAS  Google Scholar 

  75. Sahin M, Basoglu T, Bernay I, Yapici O, Canbaz F, Yalin T. Evaluation of metastatic bone disease with pentavalent99Tcm-dimercaptosuccinic acid: a comparison with wholebody scanning and 4/24 hour quantitation of vertebral lesions.Nucl Med Commun 2000; 21: 251–258.

    Article  PubMed  CAS  Google Scholar 

  76. Shikare S, Bashir K, Menon PS, Bapat RD, Tilve GH. Detection of medullary carcinoma of thyroid, with liver metastasis, using99mTc DMSA(V) scintigraphy.J Postgrad Med 1995; 41: 12–13.

    PubMed  CAS  Google Scholar 

  77. Yuksel D, Ilgan S, Arslan N, Ugur O, Ozturk E, Bayhan H. The role of Tc-99m (V) DMSA scintigraphy in the evaluation of superscan on bone scintigraphy.Clin Nucl Med 2000; 25: 193–196.

    Article  PubMed  CAS  Google Scholar 

  78. Wang SJ, Lin WY, Wey SP, Shen LH, Ting G. Pentavalent Tc-99m dimercaptosuccinic acid imaging of hepatocellular carcinoma.Neoplasma 1999; 46: 246–248.

    PubMed  CAS  Google Scholar 

  79. Ohta H, Endo K, Fujita T, Nakajima T, Sakahara H, Torizuka K, et al. Imaging of soft tissue tumors with Tc(V)-99m dimercaptosuccinic acid. A new tumor-seeking agent.Clin Nucl Med 1984; 9: 568–573.

    Article  PubMed  CAS  Google Scholar 

  80. Horiuchi K, Saji H, Yokoyama A. Carrier effect on radiolabeling the polynuclear pentavalent rhenium-186 com plex of dimercaptosuccinic acid at alkaline pH:186Re(V)-DMS.Nucl Med Biol 1990; 26: 771–779.

    Article  Google Scholar 

  81. Pantoliano MW, Bird RE, Johnson LS. Conformational stability, folding and ligand-binding affinity of single-chain Fv immunoglobulin fragments expressed inEscherichia coli.Biochemistry 1991; 30: 10117–10125.

    Article  PubMed  CAS  Google Scholar 

  82. Whitlow M, Bell BA, Feng SL, Filpula D, Hardman KD, Hubert SL, et al. An improved linker for single-chain Fv with reduced aggregation and enhanced proteolytic stability.Protein Engineering 1993; 6: 989–995.

    Article  PubMed  CAS  Google Scholar 

  83. Yazaki PJ, Shively L, Clark C, Cheung CW, Le W, Szpikowska B, et al. Mammalian expression and hollow fiber bioreactor production of recombinant anti-CEA diabody and minibody for clinical applications.J Immunol Methods 2001; 253: 195–208.

    Article  PubMed  CAS  Google Scholar 

  84. Yazaki PJ, Wu AM, Tsai SW, Williams LE, Ikler DN, Wong JY, et al. Tumor targeting of radiometal labeled anti-CEA recombinant T84.66 diabody and t84.66 minibody: comparison to radioiodinated fragments.Bioconjugate Chem 2001; 12: 220–228.

    Article  CAS  Google Scholar 

  85. Yokota T, Milenic DE, Whitlow M, Schlom J. Rapid tumor penetration of a single-chain Fv and comparison with other immunoglobulin forms.Cancer Res 1992; 52: 3402–3408.

    PubMed  CAS  Google Scholar 

  86. Yokota T, Milenic DE, Whitlow M, Wood JF, Hubert SL, Schlom J. Microautoradiographic analysis of the normal organ distribution of radioiodinated single-chain Fv and other immunoglobulin forms.Cancer Res 1993; 53: 3776–3783.

    PubMed  CAS  Google Scholar 

  87. Bakker WH, Albert R, Bruns C, Breeman WAP, Hofland LJ, Marbach P, et al. <In-111-DTPA-d-Phe1>-octreotide, a potential radiopharmaceutical for imaging of somatostatin receptor-positive tumors—synthesis, radiolabeling andin vitro validation.Life Sci 1991; 49: 1583–1591.

    Article  PubMed  CAS  Google Scholar 

  88. Bakker WH, Krenning EP, Reubi JC, Breeman WAP, Setyonohan B, Dejong M, et al.In vivo application of <In-111-DTPA-d-Phe1>-octreotide for detection of somatostatin receptor-positive tumors in rats.Life Sci 1991; 49: 1593–1601.

    Article  PubMed  CAS  Google Scholar 

  89. Mather SJ, Ellison D. Reduction-mediated technetium-99m labeling of monoclonal antibodies.J Nucl Med 1990; 31: 692–697.

    PubMed  CAS  Google Scholar 

  90. Sakahara H, Saga T, Endo K, Hattori N, Hosono M, Kobayashi H, et al.In vivo instability of reduction-mediated99mTc-labeled monoclonal antibody.Nucl Med Biol 1993; 20: 617–623.

    Article  PubMed  CAS  Google Scholar 

  91. Childs RL, Hnatowich DJ. Optimum conditions for labeling of DTPA-coupled antibodies with technetium-99m.J Nucl Med 1985; 26: 293–299.

    PubMed  CAS  Google Scholar 

  92. Hnatowich DJ, Layne WW, Childs RL, Lanteigne D, Davis MA, Griffin TW, et al. Radioactive labeling of antibody: a simple and efficient method.Science 1983; 220: 613–615.

    Article  PubMed  CAS  Google Scholar 

  93. Arano Y, Uezono T, Akizawa H, Ono M, Wakisaka K, Nakayama M, et al. Resssessment of diethylenetriaminepentaacetic acid (DTPA) as a chelating agent for indium-111 labeling of polypeptides using a newly synthesized monoreactive DTPA derivative.J Med Chem 1996; 39: 3451–3460.

    Article  PubMed  CAS  Google Scholar 

  94. Arano Y, Yokoyama A, Furukawa T, Horiuchi K, Yahata T, Saji H, et al. Technetium-99m-labeled monoclonal antibody with preserved immunoreactivity and highin vivo stability.J Nucl Med 1987; 28: 1027–1033.

    PubMed  CAS  Google Scholar 

  95. Baidoo KE, Scheffel U, Lever SZ.99mTc Labeling of Proteins: Initial evaluation of a novel diaminedithiol bifunctional chelating agent.Cancer Res 1990; 50: 799s-703s.

    PubMed  CAS  Google Scholar 

  96. Eisenhut M, Lehmann WD, Becker W, Behr T, Elser H, Strittmatter W, et al. Bifunctional NHS-BAT ester for antibody conjugation and stable technetium-99m labeling: conjugation chemistry, immunoreactivity and kit formulation.J Nucl Med 1996; 37: 362–370.

    PubMed  CAS  Google Scholar 

  97. Fritzberg AR, Abrams PG, Beaumier PL, Kashina S, Morgan AC, Rao TN, et al. Specific and stable labeling of antibodies with technetium-99m with a diamide dithiolate chelating agent.Proc Natl Acad Sci USA 1988; 85: 4025–4029.

    Article  PubMed  CAS  Google Scholar 

  98. Liu S, Edwards DS, Looby RJ, Poirier MJ, Rajopadhye M, Bourque JP, et al. Labeling cyclic glycoprotein IIb/IIIa receptor antagonists with Tc-99m by the preformed chelate approach: effects of chelators on properties of [Tc-99m]chelator-peptide conjugates.Bioconjugate Chem 1996; 7: 196–202.

    Article  CAS  Google Scholar 

  99. Maina T, Stolz B, Albert R, Bruns C, Koch P, Macke H. Synthesis, radiochemistry and biological evaluation of a new somatostatin analogue (SDZ 219–387) labelled with technetium-99m.Eur J Nucl Med 1994; 21: 437–444.

    Article  PubMed  CAS  Google Scholar 

  100. Weber RW, Boutin RH, Nedelman MA, Lister James J, Dean RT. Enhanced kidney clearance with an ester-linked99mTc-radiolabeled antibody Fab′-chelator conjugate.Bioconjugate Chem 1990; 1: 431–437.

    Article  CAS  Google Scholar 

  101. Abrams MJ, Juweid M, tenKate CI, Schwartz DA, Hauser MM, Gaul FE, et al. Technetium-99m-human polyclonal IgG radiolabeled via the hydrazino nicotinamide derivative for imaging focal sites of infection in rats.J Nucl Med 1990; 31: 2022–2028.

    PubMed  CAS  Google Scholar 

  102. Xu LC, Nakayama M, Harada K, Nakayama H, Tomiguchi S, Kojima A, et al. Synthesis and evaluation of hydroxamamide-based tetradentate ligands as a new class of thiol-free chelating molecules for99mTc radiopharmaceuticals.Nucl Med Biol 1998; 25: 295–303.

    Article  PubMed  CAS  Google Scholar 

  103. Xu LC, Nakayama M, Harada K, Kuniyasu A, Nakayama H, Tomiguchi S, et al. Bis(hydroxamamide)-based bifunctional chelating agent for99mTc labeling of polypeptides.Bioconjugate Chem 1999; 10: 9–17.

    Article  CAS  Google Scholar 

  104. Callahan RJ, Barrow SA, Abrams MJ, Rubin RH, Fischman AJ. Biodistribution and dosimetry of technetium-99m-hydrazino nicotinamide IgG: comparison with indium-111-DTPA-IgG.J Nucl Med 1996; 37: 843–846.

    PubMed  CAS  Google Scholar 

  105. Ultee ME, Bridger GJ, Abrams MJ, Longley CB, Burton CA, Larsen SK, et al. Tumor imaging with technetium-99m-labeled hydrazinonicotinamide-Fab′ conjugates.J Nucl Med 1997; 38: 133–138.

    PubMed  CAS  Google Scholar 

  106. van der Laken CJ, Boerman OC, Oyen WJ, van de Ven MT, Edwards DS, Barrett JA, et al. Technetium-99m-labeled chemotactic peptides in acute infection and sterile inflammation.J Nucl Med 1997; 38: 1310–1315.

    PubMed  Google Scholar 

  107. Babich JW, Tompkins RG, Graham W, Barrow SA, Fischman AJ. Localization of radiolabeled chemotactic peptide at focal sites of Escherichia coli infection in rabbits: evidence for a receptor-specific mechanism.J Nucl Med 1997; 38: 1316–1322.

    PubMed  CAS  Google Scholar 

  108. Rabich JW, Solomon H, Pike MC, Kroon B, Graham W, Abrams MJ, et al. Technetium-99m-labeled hydrazino nicotinamide derivatized chemotactic peptide analogs for imaging focal sites of bacterial infection.J Nucl Med 1993; 34: 1964–1974.

    Google Scholar 

  109. Pearson DA, Lister James J, McBride WJ, Wilson DM, Martel LJ, Civitello ER, et al. Somatostatin receptor-binding peptides labeled with technetium-99m: chemistry and initial biological studies.J Nucl Chem 1996; 39: 1361–1371.

    CAS  Google Scholar 

  110. Vallabhajosula S, Moyer BR, James JL, McBride BJ, Lipszyc H, Lee H, et al. Preclinical evaluation of technetium-99m-labeled somatostatin receptor-binding peptides.J Nucl Med 1996; 37: 1016–1022.

    PubMed  CAS  Google Scholar 

  111. Decristoforo C, Mather SJ. Preparation,99mTc-labeling, andin vitro characterization of HYNIC and N3S modified RC-160 and [Tyr3]octreotide.Bioconjugate Chem 1999; 10: 431–438.

    Article  CAS  Google Scholar 

  112. Decristoforo C, Mather SJ. 99m-Technetium-labelled peptide-HYNIC conjugates: effects of lipophilicity and stability on biodistribution.Nucl Med Biol 1999; 26: 389–396.

    Article  PubMed  CAS  Google Scholar 

  113. Decristoforo C, Mather SJ. Technetium-99m somatostatin analogues: effect of labelling methods and peptide sequence.Eur J Nucl Med 1999; 26: 869–876.

    Article  PubMed  CAS  Google Scholar 

  114. Hnatowich DJ, Winnard P Jr, Virzi F, Fogarasi M, Sano T, Smith CL, et al. Technetium-99m labeling of DNA oligonucleotides.J Nucl Med 1995; 36: 2306–2314.

    PubMed  CAS  Google Scholar 

  115. Larsen SK, Solomon HF, Caldwell G, Abrams MJ. [99mTc]tricine: a useful precursor complex for the radiolabeling of hydrazinonicotinate protein conjugates.Bioconjugate Chem 1995; 6: 635–638.

    Article  CAS  Google Scholar 

  116. Liu S, Edwards DS, Looby RJ, Harris AR, Poirier MJ, Barrett JA, et al. Labeling a hydrazino nicotinamide-modified cyclic IIb/IIIa receptor antagonist with99mTc using aminocarboxylates as coligands.Bioconjugate Chem 1996; 7: 63–71.

    Article  CAS  Google Scholar 

  117. Ono M, Arano Y, Uehara T, Fujioka Y, Ogawa K, Namba S, et al. Intracellular metabolic fate of radioactivity after injection of technetium-99m-labeled hydrazino nicotinamide derivatized proteins.Bioconjugate Chem 1999; 10: 386–394.

    Article  CAS  Google Scholar 

  118. Ono M, Arano Y, Mukai T, Uehara T, Fujioka Y, Ogawa K, et al. Plasma protein binding of99mTc-labeled hydrazino nicotinamide derivatized polypeptides and peptides.Nucl Med Biol 2001; 28: 155–164.

    Article  PubMed  CAS  Google Scholar 

  119. Liu S, Edwards DS, Barrett JA.99mTc labeling of highly potent small peptides.Bioconjugate Chem 1997; 8: 621–636.

    Article  CAS  Google Scholar 

  120. Liu S, Edwards DS, Harris AR. A novel ternary ligand system for99mTc-labeling of hydrazino nicotinamide-modified biologically active molecules using imine-N-containing heterocycles as coligands.Bioconjugate Chem 1998; 9: 583–595.

    Article  CAS  Google Scholar 

  121. Ono M, Arano Y, Mukai T, Fujioka Y, Ogawa K, Uehara T, et al.99mTc-HYNIC-derivatized ternary ligand complexes for99mTc-labeled polypeptides with lowin vivo protein binding.Nucl Med Biol 2001; 28: 215–224.

    Article  PubMed  CAS  Google Scholar 

  122. Wu C, Jagoda E, Brechbiel M, Webber KO, Pastan I, Gansow O, et al. Biodistribution and catabolism of Ga-67-labeled anti-Tac dsFv fragment.Bioconjugate Chem 1997; 8: 365–369.

    Article  CAS  Google Scholar 

  123. Rogers RE, Franano PN, Duncan JR, Edwards WB, Anderson CJ, Connett JM, et al. Identification of metabolites of111In-diethylenetriaminepentaacetic acid-monoclonal antibodies and antibody fragmentsin vivo.Cancer Res 1995; 55: 5714s-5720s.

    PubMed  CAS  Google Scholar 

  124. Akizawa H, Arano Y, Uezono T, Ono M, Fujioka Y, Uehara T, et al. Renal metabolism of111In-DTPA-d-Phe1-octreotidein vivo.Bioconjugate Chem 1998; 9: 662–670.

    Article  CAS  Google Scholar 

  125. Arano Y. Strategies to reduce renal radioactivity levels of antibody fragments.Q J Nucl Med 1998; 42: 262–270.

    PubMed  CAS  Google Scholar 

  126. Akizawa H, Arano Y, Mifune M, Iwado A, Saito Y, Uehara T, et al. Significance of111In-DTPA chelate in renal radioactivity levels of111In-DTPA-conjugated peptides.Nucl Med Biol 2001; 28: 459–468.

    Article  PubMed  CAS  Google Scholar 

  127. Bridger GJ, Abrams MJ, Padmanabhan S, Gaul F, Larsen S, Henson GW, et al. A comparison of cleavable and noncleavable hydrazinopyridine linkers for the Tc-99m labeling of Fab′ monoclonal antibody fragments.Bioconjugate Chemistry 1996; 7: 255–264.

    Article  PubMed  CAS  Google Scholar 

  128. Arano Y, Wakisaka K, Akizawa H, Ono M, Kawai K, Nakayama M, et al. Assessment of the radiochemical design of antibodies with a metabolizable linkage for target-selective radioactivity delivery.Bioconjugate Chem 1998; 9: 497–506.

    Article  CAS  Google Scholar 

  129. Silvernagl S. The renal handling of amino acids and oligopeptides.Physiol Rev 1988; 68: 911–1007.

    Google Scholar 

  130. Arano Y, Fujioka Y, Akizawa H, Ono M, Uehara T, Wakisaka K, et al. Chemical design of radiolabeled antibody fragments for low renal radioactivity levels.Cancer Res 1999; 59: 128–134.

    PubMed  CAS  Google Scholar 

  131. Fujioka Y, Arano Y, Ono M, Uehara T, Ogawa K, Namba S, et al. Renal metabolism of 3′-iodohippurylN ε-maleoyl-L-lysine (HML)-conjugated Fab fragments.Bioconjugate Chem 2001; 12: 178–185.

    Article  CAS  Google Scholar 

  132. Alberto R, Schibli R, Egli A, Schubiger PA, Herrmann WA, Artus G, et al. Metal carbonyl syntheses XXII. Low pressure carbonylation of [MOCl4] and [MO4]: the technetium(I) and rhenium(I) complexes [NEt4]2[MCl3(CO)3].Organomet Chem 1995; 493: 119–127.

    Article  CAS  Google Scholar 

  133. Alberto R, Schibli R, Egli A, Schubiger AP. A novel organometallic aqua complex of technetium for the labeling of biomolecules: synthesis of [99mTc(OH2)3(CO)3]+ from [99mTcO4 ] in aqueous solution and its reaction with a bifunctional ligand.J Am Chem Soc 1998; 120: 7987–7988.

    Article  CAS  Google Scholar 

  134. Egli A, Alberto R, Tannahill L, Schibli R, Abram U, Schaffland A, et al. Organometallic99mTc-aquaion labels peptide to an unprecedented high specific activity.J Nucl Med 1999; 40: 1913–1917.

    PubMed  CAS  Google Scholar 

  135. Schibli R, La Bella R, Alberto R, Garcia-Garayoa E, Ortner K, Abram U, et al. Influence of the denticity of ligand systems on thein vitro andin vivo behavior of99mTc(I)-tricarbonyl complexes: a hint for the future functionalization of biomolecules.Bioconjugate Chem 2000; 11: 345–351.

    Article  CAS  Google Scholar 

  136. Dyszlewski ME, Bushgman MJ, Alberto R, Brodack JW, Knight H, MacDonald J, et al. Kit formulation and preliminary toxicity of [99mTc(CO)3]+ intermediate: a novel technetium radiopharmaceutical platform.J Labelled Compds Radiopharm 2001; 44, Suppl 1: S483-S485.

    Google Scholar 

  137. Spradau TW, Katzenellenbogen JA. Preparation of cyclopentadienyltricarbonylrhenium complexes using a double ligand-transfer reaction.Organometallics 1998; 17: 2009–2017.

    Article  CAS  Google Scholar 

  138. Spradau TW, Katzenellenbogen JA. Protein and peptide labeling with (cyclopentadienyl)tricarbonyl rhenium and technetium.Bioconjugate Chem 1998; 9: 765–772.

    Article  CAS  Google Scholar 

  139. Spradau TW, Edwards WB, Anderson CJ, Welch MJ, Katzenellenbogen JA. Synthesis and biological evaluation of Tc-99m-cyclopentadienyltricarbonyltechnetium-labeled octreotide.Nucl Med Biol 1999; 26: 1–7.

    Article  PubMed  CAS  Google Scholar 

  140. Skaddan MB, Wust FR, Jonson S, Syhre R, Welch MJ, Spies H, et al. Radiochemical synthesis and tissue distribution of Tc-99m-labeled Talpha-substituted estradiol complexes.Nucl Med Biol 2000; 27: 269–278.

    Article  PubMed  CAS  Google Scholar 

  141. Tanaka N, Fukushi K, Shinotoh H, Nagatsuka S, Namba H, Iyo M, et al. Positron emission tomographic measurement of brain acetylcholinesterase activity usingN-[11C]methylpiperidin-4-yl acetate without arterial blood sampling: methodology of shape analysis and its diagnostic power for Alzheimer’s disease.J Cereb Blood Flow Metab 2001; 21: 295–306.

    Article  PubMed  CAS  Google Scholar 

  142. Jurisson S, Berning D, Jia W, Ma D. Coordination compounds in nuclear medicine.Chem Rev 1993; 93: 1137–1156.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasushi Arano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arano, Y. Recent advances in99mTc radiopharmaceuticals. Ann Nucl Med 16, 79–93 (2002). https://doi.org/10.1007/BF02993710

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02993710

Key words

Navigation