Skip to main content
Log in

Effects of low copper and high zinc intakes and related changes in Cu,Zn-superoxide dismutase activity on DMBA-induced mammary tumorigenesis

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The effect of low copper and high zinc intakes on Cu,Zn-superoxide dismutase (Cu,Zn-SOD) activity and mammary tumorigenesis induced by 9,10-dimethyl-1,2-benzanthracene (DMBA) was investigated. Groups of 40 weanling female Sprague-Dawley rats were fed a modified AIN-76 diet containing the following (/kg diet): 1 mg Cu (0.016 mmol) and 30 mg Zn (0.459 mmol); 6 mg Cu (0.094 mmol) and 30 mg Zn (0.459 mmol) (control); or 6 mg Cu (0.094 mmol) and 150 mg Zn (2.295 mmol) for 21 wk. At 5 wk, 30 rats/group were given 4 mg (15.6 μmol) DMBA in corn oil intragastrically, and controls (10/group) received corn oil alone. Erythrocyte Cu,Zn-SOD activity was measured at 3, 5 (just before DMBA), 9, 13, 17, and 21 wk. The group fed the high-Zn diet had a slightly lower weight gain and food consumption. DMBA treatment had no effect on these parameters. Plasma and liver Cu concentration decreased in the low-Cu group. Femur zinc was significantly elevated in the high-Zn group. Erythrocyte Cu,Zn-SOD activity was decreased in the low-Cu group from 3 to 21 wk and was significantly elevated in the high-Zn group at 3 and 5 wk. In the low-Cu group, there were 5 nonmalignant adenomas and 3 malignant adenocarcinomas; in the control group, there were 4 adenomas and 3 adenocarcinomas; in the high-Zn group, there were 5 adenomas and 3 adenocarcinomas. No relationship between Cu,Zn-SOD activity and the presence of tumors could be found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Nagata, M. Kodama, Y. Ioki, and T. Kimura,Free Radicals and Cancer, R. A. Floyd, ed., Marcel Dekker, New York, 1982, pp. 1–62.

    Google Scholar 

  2. C. Nagata, M. Kodama, T. Kimura, and T. Nakayama, (1985),P-450 and Chemical Carcinogenesis, Gann Monograph on Cancer Research, No. 30, Y. Tagashira, and T. Omura, eds., Japan Scientific Societies Press, Tokyo, pp. 93–110.

    Google Scholar 

  3. M. Kodama, T. Nakayama, M. Kaneko, H. Saito, T. Oda, and Y. SatoMedical, Biochemical and Chemical Aspects of Free Radicals, vol. 2, O. Hayaishi, E. Niki, M. Kondo, T. Yoshikawa, eds., Elsevier, Amsterdam, 1989, pp. 1499–1502.

    Google Scholar 

  4. H. C. Birnboim,Carcinogenesis 7, 1511 (1986).

    Article  PubMed  CAS  Google Scholar 

  5. Y. Nakamura, T. D. Gindhart, D. Winterstein, I. Tomita, J. L. Seed, and N. H. Colburn,Carcinogenesis 9, 203 (1988).

    Article  PubMed  CAS  Google Scholar 

  6. U. Armato, P. G. Andreis, and F. Romano,Carcinogenesis 5, 1547 (1984).

    Article  PubMed  CAS  Google Scholar 

  7. E. D. Werts and M. N. Gould,Carcinogenesis 7, 1197 (1986).

    Article  PubMed  CAS  Google Scholar 

  8. P. W. F. Fischer, A. Giroux, and M. R. L'Abbé,Am. J. Clin. Nutr. 40, 743 (1984).

    PubMed  CAS  Google Scholar 

  9. M. R. L'Abbé, and P. W. F. Fischer,J. Nutr. 114, 813 (1984).

    PubMed  Google Scholar 

  10. American Institute of Nutrition,J. Nutr. 107, 1340 (1977).

    Google Scholar 

  11. American Institute of Nutrition,J. Nutr. 110, 1726 (1980).

    Google Scholar 

  12. S. Young, and R. C. Hallowes,Pathology of Tumors in Lab Animals. Tumors of the Rat, vol. 1. V. S. Turusov, ed., WHO, IARC, Lyon, 1973, pp. 31–74.

    Google Scholar 

  13. M. R. L'Abbé, P. W. F. Fischer, J. S. Campbell and E. R. Chavez,J. Nutr. 119, 757 (1989).

    PubMed  Google Scholar 

  14. M. R. L'Abbé and P. W. F. Fischer,Clin. Biochem. 19, 175 (1986).

    Article  PubMed  Google Scholar 

  15. Center for Disease Control,Health Summary Report. Trace Metals Survey I. Dept of Health, Education and Welfare, Atlanta, 1976.

    Google Scholar 

  16. H. Ohkawa, N. Ohishi and K. Yagi,Anal. Biochem. 95, 351 (1979).

    Article  PubMed  CAS  Google Scholar 

  17. H. Kosugi, T. Kojima, and K. Kikugawa, Lipids24, 873 (1989).

    Article  CAS  Google Scholar 

  18. G. W. Snedecor, and W. G. Cochran,Statistical Methods, 6rh ed. Iowa State University Press, Ames, IA, 1967, pp. 272–275.

    Google Scholar 

  19. M. R. L'Abbé and P. W. F. Fischer,J. Nutr. 114, 823 (1984).

    PubMed  Google Scholar 

  20. P. W. F. Fischer, A. Giroux and M. R. L'Abbé,J. Nutr. 113, 462 (1983).

    PubMed  CAS  Google Scholar 

  21. J. Z. Byczkowski, and T. Gessner,Gen. Pharmacol. 18, 385

  22. J. Z. Byczkowski and T. Gessner,Int. J. Biochem. 19, 531 (1987).

    Article  PubMed  CAS  Google Scholar 

  23. M. L. Cunningham, J. G. Peak, and M. J. Peak,Mutat. Res. 184, 217 (1987).

    PubMed  CAS  Google Scholar 

  24. C. Deby and R. Goutier,Biochem. Pharmacol. 39, 399 (1990).

    Article  PubMed  CAS  Google Scholar 

  25. G. Minotti, and S. D. Aust,Chem. Biol. Interact. 71, 1 (1989).

    Article  PubMed  CAS  Google Scholar 

  26. C. T. Dameron, and E. D. Harris,Biochem. J. 248, 669 (1987).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

A portion of these results were presented at the 74th FASEB Meeting, Washington, DC, April 1–5, 1990, Abstract 712. Publication No. 349 of the Bureau of Nutritional Sciences.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fischer, P.W.F., Campbell, J.S. & Giroux, A. Effects of low copper and high zinc intakes and related changes in Cu,Zn-superoxide dismutase activity on DMBA-induced mammary tumorigenesis. Biol Trace Elem Res 30, 65–79 (1991). https://doi.org/10.1007/BF02990343

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02990343

Index Entries

Navigation