Skip to main content
Log in

Systems-level analysis of genome-scalein silico metabolic models using MetaFluxNet

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The systems-level analysis of microbes with myriad of heterologous data generated by omics technologies has been applied to improve our understanding of cellular function and physiology and consequently to enhance production of various bioproducts. At the heart of this revolution residesin silico genome-scale metabolic model. In order to fully exploit the power of genome-scale model, a systematic approach employing user-friendly software is required. Metabolic flux analysis of genome-scale metabolic network is becoming widely employed to quantify the flux distribution and validate model-driven hypotheses. Here we describe the development of an upgraded MetaFluxNet which allows (1) construction of metabolic models connected to metabolic databases, (2) calculation of fluxes by metabolic flux analysis, (3) comparative flux analysis with flux-profile visualization, (4) the use of metabolic flux analysis markup language to enable models to be exchanged efficiently, and (5) the exporting of data from constraints-based flux analysis into various formats. MetaFluxNet also allows cellular physiology to be predicted and strategies for strain improvement to be developed from genome-based information on flux distributions. This integrated software environment promises to enhance our understanding on metabolic network at a whole organism level and to establish novel strategies for improving the properties of organisms for various biotechnological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lee, S. Y., D.-Y. Lee, and T. Y. Kim (2005) Systems biotechnology for strain improvement.Trends Biotechnol. 25: 349–358

    Article  CAS  Google Scholar 

  2. Palsson, B. O. (2000) The challenges ofin silico biology.Nat. Biotechnol. 18: 1147–1150.

    Article  CAS  Google Scholar 

  3. Kitano, H. (2002) Systems biology: a brief overview.Science 295: 1662–1664.

    Article  CAS  Google Scholar 

  4. Nielsen, J. (2003) It is all about metabolic fluxes.J. Bacteriol. 185: 7031–7035.

    Article  CAS  Google Scholar 

  5. Lee, S. Y. and E. T. Papoutsakis (1999) Metabolic Engineering. pp. 13–55. Marcel Dekker, NY, USA.

    Google Scholar 

  6. Patil, K. R., M. Åkesson, and J. Nielsen (2004) Use of genome-scale microbial models for metabolic engineering.Curr. Opin. Biotechnol. 15: 64–66.

    Article  CAS  Google Scholar 

  7. Stephanopoulos, G. (2004) Exploiting biological complexity for strain improvement through systems biology.Nat. Biotechnol. 22: 1261–1267.

    Article  CAS  Google Scholar 

  8. Lee, D.-Y., H. Yun, S. Y. Lee, and S. Park (2003) MetaFluxNet: the management of metabolic reaction information and quantitative metabolic flux analysis.Bioinformatics 19: 2144–2146.

    Article  CAS  Google Scholar 

  9. Ishii, N., M. Robert, Y. Nakayama, A. Kanai, and M. Tomita (2004) Toward large-scale modeling of the microbial cell for computer simulation.J. Biotechnol. 113: 281–294.

    Article  CAS  Google Scholar 

  10. Wiechert, W. (2002) Modeling and simulation: tools for metabolic engineering.J. Biotechnol. 94: 37–63.

    Article  CAS  Google Scholar 

  11. Kierzek, A. M. (2002) STOCKS: STOChastic Kinetic Simulations of biochemical systems with Gillespie algorithm.Bioinformatics 18: 470–481.

    Article  CAS  Google Scholar 

  12. Chassagnole, C., N. Noisommit-Rizzi, J. W. Schmid, K. Mauch, and M. Reuss (2002) Dynamic modeling of the central carbon metabolism ofEscherichia coli.Biotechnol. Bioeng. 79: 53–73.

    Article  CAS  Google Scholar 

  13. Covert, M. W., E. M. Knight, M. J. Herrgard, and B. O. Palsson (2004) Integrating high-throughput and computational data elucidate bacterical networks.Nature 429: 92–96.

    Article  CAS  Google Scholar 

  14. Papin, J. A., J. Stelling, N. D. Price, S. Klamt, S. Schuster, and B. O. Palsson (2004) Comparison of network-based pathway analysis methods.Trends Biotechnol. 22: 400–405.

    Article  CAS  Google Scholar 

  15. Klamt, S. and J. Stelling (2003) Two approaches for metabolic pathway analysis?.Trends Biotechnol. 21: 64–69.

    Article  CAS  Google Scholar 

  16. Lee, D.-Y., L. T. Fan, S. Park, S. Y. Lee, S. Shafie, B. Bertok, and F. Friedler (2005) Complementary identification of multiple flux distributions and multiple metabolic pathways.Metab. Eng. 7: 182–200.

    Article  CAS  Google Scholar 

  17. Hou, B. K., J. S. Kim, J. H. Jun, D.-Y. Lee, Y. W. Kim, S. Chae, M. Roh, Y.-H. In, and S. Y. Lee (2004) BioSilico: an integrated metabolic database system.Bioinformatics 20: 3270–3272.

    Article  CAS  Google Scholar 

  18. Hucka, M., A. Finney, H. M. Sauro, H. Bolouri, I. C. Doyle, and H. Kitano, and the rest of the SBML Forum. (2003) The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models.Bioinformatics 19: 524–531.

    Article  CAS  Google Scholar 

  19. Yun, H. S., D.-Y. Lee, J. W. Jeong, S. H. Lee, and S. Y. Lee (2005) MFAML: a standard data structure for representing and exchanging metabolic flux models.Bioinformatics Advance Access published on May 19. doi: 10.1093/bioinformatics/bti502.

  20. Keseler, I. M., J. Collado-Vides, S. Gama-Castro, J. Ingraham, S. Paley, I. T. Paulsen, M. Peralta-Gil, and P. D. Karp (2005) EcoCyc: A comprehensive database resource forEscherichia coli.Nucleic Acids Res. 33: D334–337.

    Article  CAS  Google Scholar 

  21. Kanehisa, M., S. Goto, S. Kawashima, Y. Okuno, and M. Hattori (2004) The KEGG resources for deciphering the genome.Nucleic Acids Res. 32: D277–280.

    Article  CAS  Google Scholar 

  22. Hong, S. H., J. S. Kim, S. Y. Lee, Y. H. In, S. S. Choi, J. K. Rih, C. H. Kim, H. Jeong, C. G. Hur, and J. J. Kim (2004) The genome sequence of the capnophilic rumen bacteriumMannheimia succiniciproducens.Nat. Biotechnol. 22: 1275–1281.

    Article  CAS  Google Scholar 

  23. Reed, J. L. and B. O. Palsson (2003) Thirteen years of building constraint-basedin silico models ofEscherichia coli.J. Bacteriol. 185: 2692–2699.

    Article  CAS  Google Scholar 

  24. Covert, M. W., I. Famili, and B. O. Palsson (2003) Identifying constraints that govern cell behavior: a key to converting conceptual to computational models in biology?Biotechnol. Bioeng. 84: 763–772.

    Article  CAS  Google Scholar 

  25. Keasling, J. D. and J. Pramnik (1997) Stoichiometric model ofEscherichia coli metabolism: incorporation of growthrate dependent biomass composition and mechanistic energy requirements.Biotechnol. Bioeng. 56: 398–421.

    Article  Google Scholar 

  26. Reed, J. L., T. D. Vo, C. H. Schilling, and B. O. Palsson (2003) An expanded genome-scale model ofEscherichia coli K-12 (iJR904 GSM/GPR).Genome Biol. 4: R54.

    Article  Google Scholar 

  27. Förster, J., I. Famili, P. Fu, B. O. Palsson, and J. Nielsen (2003) Genome-scale reconstruction of theSaccharomyces cerevisiae metabolic network.Genome Res. 13: 244–253.

    Article  CAS  Google Scholar 

  28. Beard, D. A., S. Liang, and H. Qian (2002) Energy balance for analysis of complex metabolic networks.Biophys. J. 83: 79–86.

    Article  CAS  Google Scholar 

  29. Wiback, S. J., R. Mahadevan, and B. O. Palsson (2004) Using metabolic flux data to further constrain the metabolic solution space and predict internal flux patterns: theEscherichia coli spectrum.Biotechnol. Bioeng. 86: 317–331.

    Article  CAS  Google Scholar 

  30. Covert, M. W., C. H. Schilling, and B. O. Palsson (2001) Regulation of gene expression in flux balance models of metabolism.J. Theor. Biol. 213: 78–88.

    Article  CAS  Google Scholar 

  31. Schilling, C. H., J. S. Edwards, and B. O. Palsson (1999) Toward metabolic phenomics: analysis of genomic data using flux balances.Biotechnol. Prog. 15: 288–295.

    Article  CAS  Google Scholar 

  32. Herragard, M. J., M. W. Covert, and B. O. Palsson (2004) Reconstruction of microbial transcriptional regulatory networks.Curr. Opin. Biotechnol. 15: 70–77.

    Article  CAS  Google Scholar 

  33. Varma, A. and B. O. Palsson (1994) Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-typeEscherichia coli W3110.Appl. Env. Microbiol. 60: 3724–3731.

    CAS  Google Scholar 

  34. Christensen, B. and J. Nielsen (1999) Isotopomer analysis using GC-MS.Metab. Eng. 1: 282–290.

    Article  CAS  Google Scholar 

  35. Fischer, E., and U. Sauer (2003) Metabolic flux profiling ofEscherichia coli mutants in central carbon metabolism using GC-MS.Eur. J. Biochem. 270: 880–891.

    Article  CAS  Google Scholar 

  36. Hong, S. H., S. J. Park, S. Y. Moon, J. P. Park, and S. Y. Lee (2003)In silico prediction and validation of the importance of Entner-Doudoroff pathway in poly(3-hydroxybutyrate) production by metabolically engineeredEscherichia coli.Biotechnol. Bioeng. 83: 854–863.

    Article  CAS  Google Scholar 

  37. Burgard, A. P. and C. D. Maranas (2001) Probing the performance limits of theEscherichia coli metabolic network subject to gene additions or deletions.Biotechnol. Bioeng. 74: 364–375.

    Article  CAS  Google Scholar 

  38. Edwards, J. S., R. U. Ibarra, and B. O. Palsson (2001)In silico predictions ofEscherichia coli metablic capabilities are consistent with experimental data.Nat. Biotechnol. 19: 125–130.

    Article  CAS  Google Scholar 

  39. Burgard A. P., P. Pharkya, and C. D. Maranas (2003) Optknock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization.Biotechnol. Bioeng. 84: 647–656.

    Article  CAS  Google Scholar 

  40. Segre, D., D. Vitkup, and G. M. Church (2002) Analysis of optimality in natural and perturbed metabolic networks.Proc. Natl. Acad. Sci. USA 99: 15112–15117.

    Article  CAS  Google Scholar 

  41. Covert, M. W. and B. O. Palsson (2002) Transcriptional regulation in constraints-based metabolic models ofEscherichia coli.J. Biol. Chem. 277: 28058–28064.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Yup Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, S.Y., Woo, H.M., Lee, DY. et al. Systems-level analysis of genome-scalein silico metabolic models using MetaFluxNet. Biotechnol. Bioprocess Eng. 10, 425–431 (2005). https://doi.org/10.1007/BF02989825

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02989825

Keywords

Navigation