Skip to main content
Log in

Predicting reductive transformation rates of halogenated aliphatic compounds using different QSAR approaches

  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The kinetics of the reductive transformation rates of a set of 17 halogenated aliphatic hydrocarbons in anaerobic sediment-water mixtures are examined using different QSAR methods. Statistical experimental design in combination with multivariate chemical characterization of the compounds was used to select a representative training and validation set. The aim of the QSARs is to generate predictions for priority setting and risk assessment purposes, and to better understand the kinetics of the dehalogenation of aliphatic hydrocarbons. The first QSAR was constructed with multiple linear regression using readily available descriptors. Subsequently, a multivariate QSAR was constructed using the partial least squares (PLS) method with 36 (physico)-chemical descriptors. Finally, a transition state approach has been used in which quantum chemically calculated activation energies for the transition state of the most probable reaction mechanism are used to model the reaction rate constantsk. Because of the relatively small size of the training set (10 compounds) the linear regression QSAR using multiple descriptors does not show good predictive capabilities on the validation set. The PLS relationship and the transition state QSAR are both capable of generating predictions of rate constants within one order of magnitude. Moreover, the transition state QSAR closely follows, and thus corroborates the assumed reaction mechanism for reductive dehalogenation. Predictions for 23 non tested halogenated aliphatics are given and compared using both the PLS and the transition state model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Karcher;B.G. Hansen;C. van Leeuwen;P. Wagner;C. Auer: Predictions for existing chemicals — A multilateral QSAR project. SAR & QSAR Environ. Res.3 (1995) 217–221

    Article  CAS  Google Scholar 

  2. J. Hermens;S. Balaz;J. Damborsky;W. Karcher;M. Müller;W. Peijnenburg;A. Sabljic;M. Sjöström: Assessment of QSARs for predicting fate and effects of chemicals in the environment: an international european project. SAR & QSAR Environ. Res.3 (1995) 223–236

    Article  CAS  Google Scholar 

  3. J.M. Suflita;A. Horowitz;D.R. Shelton;J.M. Tiedje: Dehalogenation: a novel pathway for the anaerobic biodegradation of haloaromatic compounds. Science218 (1982) 1115–1117

    Article  CAS  Google Scholar 

  4. J. Struijs;J.E. Rogers: Reductive dehalogenation of dichloroanilines by anaerobic microorganisms in fresh and dichlorophenol-acclimated pond sediment. Appl. Environ. Microbiol.55 (1989) 2527–2531

    CAS  Google Scholar 

  5. W.J.G.M. Peijnenburg;M.J. ′t Hart;H.A. den Hollander;D. van de Meent;H.H. Verboom;N.L. Wolfe: Reductive transformations of halogenated aromatic hydrocarbons in anaerobic water-sediment systems: Kinetics, mechanisms and products. Environ. Toxicol. Chem.11 (1992) 286–300

    Google Scholar 

  6. J.E.M. Beurskens: Microbial transformation of chlorinated aromatics in sediments. PhD. Thesis Landbouwuniversiteit Wageningen, Wageningen, The Netherlands 1995

    Google Scholar 

  7. H.B. Krop;L.C.M. Commandeur;H.A.J. Govers: Prediction of redox potentials and isomer distribution yields for reductive dechlorination of chlorobenzenes. SAR & QSAR Environ. Res.2 (1994) 271 -287

    Article  CAS  Google Scholar 

  8. E. Rorije;J.H. Langenberg;J. Richter;W.J.G.M. Peijnenburg: Modeling reductive dehalogenation with quantum chemically derived descriptors. SAR & QSAR Environ. Res.4 (1995) 237–252

    Article  CAS  Google Scholar 

  9. R.P. Richards;J.W. Kramer;D.B. Baker;K.A. Krieger: Pesticides in rainwater in the Northern United States. Nature327 (1987) 129–131

    Article  Google Scholar 

  10. K.H. Reinert;J.H. Rodgers: Fate and persistence of aquatic herbicides. Rev. Environ. Contam. Toxicol.98 (1987) 61

    CAS  Google Scholar 

  11. G.M. Klecka;S.J. Gonsior: Reductive dechlorination of chlorinated methanes and ethanes by reduced iron(II)porphyrins. Chemosphere13 (1984) 391–402

    Article  CAS  Google Scholar 

  12. G.P. Curtis; M. Reinhard: Reductive dehalogenation of hexachloroethane, carbon tetrachloride, and bromoform by anthraquinone disulfonate and humic acid. Environ. Sci. Technol.28 (1994) 2393–2401

    Article  CAS  Google Scholar 

  13. H.J.M. Verhaar;E. Rorije;H. Borkent;W. Seinen;J.L.M. Hermens. Modelling the nucleophilic reactivity of small organochlorine electrophiles. A mechanistically-based Quantitative Structure-Activity Relationship. Environ. Toxicol. Chem.15 (1996) 1011–1018.

    Article  CAS  Google Scholar 

  14. L. Eriksson;J. Jonsson;S. Hellberg,;F. Lindgren;B. Skager-BERG;M. Sjöström;S. Wold;R. Berglind: A strategy for ranking environmentally occurring chemicals. Part III: Multivariate Quantitative Structure-Activity Relationships for halogenated aliphatics. Environ. Toxicol. Chem.9 (1990) 1339–1351

    Article  CAS  Google Scholar 

  15. G.E.P. Box;W.G. Hunter;J.S. Hunter: Statistics for Experimenters, Wiley, New York 1978

    Google Scholar 

  16. L. Eriksson;J. Jonsson;S. Hellberg;F. Lindgren;M. Sjöström;S. Wold;B.E. Sandström; I. Svensson: A strategy for ranking environmentally occurring chemicals. Part V: The development of two genotoxicity QSARs for halogenated aliphatics. Environ. Toxicol. Chem.10 (1991) 585–569

    Article  CAS  Google Scholar 

  17. W.J.G.M. Peijnenburg; L. Eriksson; A. de Groot; M. Sjöström; H. Verboom: The kinetics of reductive dehalogenation of a set of halogenated aliphatic hydrocarbons in anaerobic sediment slurries. submitted (1996)

  18. R.S. Wade;C.E. Castro: Oxidation of iron(II)porphyrins by alkyl halides. J. Am. Chem. Soc.95 (1973) 226

    Article  CAS  Google Scholar 

  19. T.M. Vogel;C.S. Criddle;P.L. McCarty: Transformations of halogenated aliphatic compounds. Environ. Sci. Technol.21 (1987) 722

    Article  CAS  Google Scholar 

  20. L.P. Wackett;M.S.P. Logan;F.A. Blocki;C. Bao-li: A mechanistic perspective on bacterial metabolism of chlorinated methanes. Biodegradation3 (1992) 19–36

    Article  CAS  Google Scholar 

  21. C.J. Gantzer;L.P. Wackett: Reductive dechlorination catalyzed by bacterial transition-metal coenzymes. Environ. Sci. Technol.25 (1991) 715–722

    Article  CAS  Google Scholar 

  22. U.E. Krone;R.K. Thauer;H.P.C. Hogenkamp: Reductive dehalogenation of chlorinated C1-hydrocarbons mediated by corrinoids. Biochemistry28 (1989) 4908–4914

    Article  CAS  Google Scholar 

  23. D. Leo;D. Weininger: MedChem Software manual. Daylight Chemical Information Systems Inc. USA 1989

    Google Scholar 

  24. C. Hansch;A.J. Leo: Substituent constants for correlation analysis in chemistry and biology. John Wiley & Sons, New York, NY, USA 1979

    Google Scholar 

  25. L. Eriksson: A strategy for ranking environmentally occurring chemicals. PhD. Thesis University of Umeå, Umeå, Sweden 1991

    Google Scholar 

  26. L. Eriksson;H. Verboom;W.J.G.M. Peijnenburg: Multivariate QSAR modelling of the rate of reductive dehalogenation of haloalkanes. Journal of Chemometrics10 (1996) 483–492

    Article  CAS  Google Scholar 

  27. S. Wold. In:H.v.d. Waterbeemd (ed.) Chemometric methods in molecular design-methods and principles in medicinal chemistry, VCH, Weinheim (1995)

  28. A. Höskuldsson: Journal of Chemometrics9 (1995) 91

    Article  Google Scholar 

  29. SIMCA-S 6.0, Umetri AB, P.O.Box 7960, 90719 Umeå, Sweden (1995)

  30. M.J. Frisch; G.W. Trucks; M. Head-Gordon; P.M.W. Gill; M.W. Wong; J.B. Foresman; B.G. Johnson; H.B. Schlegel; M.A. Robb; E.S. Replogle; R. Gomperts; J.L. Andres; K. Raghavachari; J.S. Binkley; C. Gonzalez; R.L. Martin; D.J. Fox; D.J. Defrees; J. Baker; J.J.P. Stewart; and J.A. Pople: Gaussian 92, Revision E.1. Gaussian Inc., Pittsburgh USA 1992

  31. J.B. Foresman; Æ. Frisch: Exploring Chemistry with Electronic Structure Methods, Gaussian, Inc., Pittsburgh USA 1993

  32. W.J.G.M. Peijnenburg, H. den Hollander, D. van de Meent, H. Verboom, N.L. Wolfe: De ontwikkeling van een struktuur-aktiviteits relatie voor de reductie van gehalogeneerde koolwaterstoffen in anaerobe water-sediment Systemen. RIVM-report nr. 718817001, Bilthoven, The Netherlands, 1988

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rorije, E., Eriksson, L., Verboom, H. et al. Predicting reductive transformation rates of halogenated aliphatic compounds using different QSAR approaches. Environ. Sci. & Pollut. Res. 4, 47–54 (1997). https://doi.org/10.1007/BF02986265

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02986265

Keywords

Navigation