Skip to main content
Log in

A mechanistic perspective on bacterial metabolism of chlorinated methanes

  • Focus Section: Microbial Metabolism of C1-Pollutants
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

Chlorinated methanes are important environmental pollutants, which can be metabolized by bacteria. The biotransformation of chlorinated methanes by bacteria has been shown to be due either to gratuitous metabolism (cometabolism) or their use as a source of carbon and energy. The reactions which result in carbon-halogen bond cleavage include substitutive, reductive, oxygenative, and gem-elimination mechanisms. Certain methylotrophic bacteria can use dichloromethane as a source of carbon and energy. Dichloromethane dehalogenase catalyzes the first substitutive reaction in this metabolism. The enzyme shows a 1010-fold rate enhancement over the reaction of the bisulfide anion with dichloromethane in water. Pseudomonas putida G786 synthesizes cytochrome P-450CAM which catalyzes the gratuitous reduction of chlorinated methanes. These studies with purified enzymes are beginning to reveal more detailed mechanistic features of bacterial chlorinated methane metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DNA:

deoxyribonucleic acid

kcat :

catalytic first order rate constant for an enzyme catalyzed reaction

KM :

Michaelis constant for an enzyme catalyzed reaction

MNDO:

modified neglect of diatomic overlap

PIMA:

pattern induced multialignment

DCMD:

dichloromethane dehalogenase

References

  • Ahmed & Anders (1976) Metabolism of dihalomethanes to formaldehyde and inorganic halide I. In vitro studies. Drug Metab. Dispo. 4: 357–361

    Google Scholar 

  • AhmedAE & AndersMW (1978) Metabolism of ihalomethanes to formaldehyde and inorganic halide II. Studies on the mechanism of the reaction. Biochem. Pharmacol. 27: 2021

    Google Scholar 

  • Alvarez-CohenL & McCartyPL (1991a) Two-stage dispersedgrowth treatment of halogenated aliphatic compounds by cometabolism. Environ. Sci. Technol. 25: 1387–1393

    Google Scholar 

  • Alvarez-CohenL & McCartyPL (1991b) Product toxicity and cometabolic competitive inhibition modeling of chloroform and trichloroethylene transformation by methanotrophic resting cells. Appl. Environ. Microbiol. 57: 1031–1037

    Google Scholar 

  • AndersMW & PohlLR (1985) Halogenated alkanes. In: AndersMW (Ed) Bioactivation of Foreign Compounds, Halogenated Alkanes (pp 283–315). Academic Press, New York

    Google Scholar 

  • AndersonJG, TooheyDW & BruneWH (1991) Free radicals within the antarctic vortex: the role of CFC's in antarctic ozone loss. Science 251: 39–46

    Google Scholar 

  • AnthonyC (1982) The Biochemistry of Methylotrophs. Academic Press, London

    Google Scholar 

  • ArmstrongRN (1991) Glutathione S-transferases: reaction mechanism, structure, and function. Chem. Res. Toxicol. 4: 131–140

    CAS  PubMed  Google Scholar 

  • BouwerEJ & McCartyPL (1983) Transformations of 1- and 2-carbon halogenated aliphatic organic compounds under methanogenic conditions. Appl. Environ. Microbiol. 45: 1286–1294

    Google Scholar 

  • BouwerEJ, RittmanBE & McCartyPL (1981) Anaerobic degradation of halogenated 1- and 2-carbon compounds. Environ. Sci. Tech. 15: 596–599

    Google Scholar 

  • BradshawWH, ConradHE, CoreyEJ, GunsalusIC & LednicerD (1959) Microbiological degradation of (+)-camphor. J. Am. Chem. Soc. 81: 5507

    Google Scholar 

  • BrusseauGA, TsienHC, HansonRS & WackettLP (1990) Optimization of trichloroethylene oxidation by methanotrophs and the use of a colorimetric assay to detect soluble methane monooxygenase activity. Biodegradation 1: 19–29

    Google Scholar 

  • CastroCE, WadeRS & BelserNO (1985) Biodehalogenation: reactions of cytochrome P-450 with polyhalomethanes. Biochemistry 24: 204–210

    Google Scholar 

  • ChouPY & FasmanGD (1978) Empirical predictions of protein conformation. Ann. Rev. Biochem. 47: 251–276

    Google Scholar 

  • ColbyJ, StirlingD & DaltonH (1977) The soluble methane monooxygenase of Methylococcus capsulatus (Bath): its ability to oxygenate n-alkanes, n-alkenes, ethers and alicyclic, aromatic and heterocyclic compounds. Biochem. J. 165: 395–402

    Google Scholar 

  • CriddleCS, DeWittJT & McCartyPL (1990a) Reductive dehalogenation of carbon tetrachloride by Escherichia coli K-12 Appl Environ. Micro. 56: 3247–3254

    Google Scholar 

  • CriddleCS, DeWittJT, Grbić-CalićD & McCartyPL (1990b) Transformation of carbon tetrachloride by Pseudomonas sp KC under denitrification conditions. Appl. Environ. Microbiol. 56: 3240–3246

    Google Scholar 

  • DeanJA (1985) Lange's Handbook of Chemistry (13th ed.). McGraw-Hill, New York

    Google Scholar 

  • DiekertG, KleeB & ThauerRK (1980) Nickel, a component of factor F430 from Methanobacterium thermoautotrophicum. Arch. Microbiol. 124: 103–106

    Google Scholar 

  • DiStefanoTD, GossetJM & ZinderSH (1991) Reductive dechlorination of high concentrations of tetrachloroethene to ethene by an anaerobic enrichment culture in the absence of methanogenesis. Appl. Environ. Microbiol. 57: 2287–2292

    Google Scholar 

  • DouglasKT (1987) Mechanism of action of glutathione dependent enzymes. In: MeisterA (Ed) Advances in Enzymology and Related Areas of Molecular Biology 59: 103–167. John Wiley & Sons, New York

    Google Scholar 

  • EgliC, ScholtzR, CookAM & LeisingerT (1988a) Anaerobic dechlorination of tetrachloromethane and 1,2-dichloroethane to degradable products by pure cultures of Desulfobacterium sp. and Methanobacterium sp. FEMS Microbiol. Lett. 43: 257–261

    Google Scholar 

  • EgliC, TschanT, ScholtzR, CookAM & LeisingerT (1988b) Transformation of tetrachloromethane to dichloromethane and carbon dioxide by Acetobacterium woodii. Appl. Environ. Microbiol. 54: 2819–2824

    Google Scholar 

  • EgliC, StromeyerS, CookAM & LeisingerT (1990) Transformation of tetra- and trichloromethane to CO2 by anaerobic bacteria is a non-enzymic process. FEMS Microbiol. Lett. 68: 207–212

    Google Scholar 

  • FisherMT & SligarSG (1985) Control of heme protein potential and reduction rate: linear free energy relation between potential and ferric spin state equilibrium. J. Am. Chem. Soc. 107: 5018–5019

    Google Scholar 

  • FoxBG, BornemanJG, WackettLP & LipscombJD (1990) Haloalkane oxidation by the soluble methane monooxygenase from Methylsinus trichosporium OB3b: mechanistic and environmental implications. Biochemistry 29: 6419–6427

    Google Scholar 

  • FreedmanDL & GossetJM (1991) Biodegradation of dichloromethane and its utilization as a growth substrate under methanogenic conditions. Appl. Environ. Microbiol. 57: 2847–2857

    Google Scholar 

  • FukuiK, MorokumaK, KatoH & YonezawaT (1963) Polarographic reductive and electronic structures of organic halides. Bull. Chem. Soc. Japan 36: 217–222

    Google Scholar 

  • Gälli R (1986) Optimierung des mikrobiellen abbaus von dichloromethan in einem wirbelschicht-bioreaktor. Ph.D. dissertation, Swiss Federal Institute of Technology (ETH) Zürich

  • GälliR & McCartyPL (1989) Biotransformation of 1,1,1-trichloroethane, trichloromethane, and tetrachloromethane by a Clostridium sp. Appl. Environ. Microbiol. 55: 837–844

    Google Scholar 

  • GälliR, StuckiG & LeisingerT (1982) Mechanism of dehalogenation of dichloromethane by cell extracts of Hyphomicrobium DM2. Experentia 38: 1378

    Google Scholar 

  • GantzerCJ & WackettLP (1991) Reductive dehalogenation catalyzed by bacterial transition-metal coenzymes. Environ. Sci. Technol. 25: 715–722

    Google Scholar 

  • GraminskiGF, KuboY, & ArmstrongRN (1989) Spectroscopic and kinetic evidence for the thiolate anion of glutathione at the active site of glutathione S-transferase. Biochemistry 28: 3562–3568

    Google Scholar 

  • GreimH, BimboesD, EgertG, GoeggelmanW & KraemerM (1977) Mutagenicity and chromosomal aberrations as an analytical tool for in vitro detection of mammalian enzyme-mediated formation of reactive metabolites. Arch. Toxicol. 39: 159–169

    Google Scholar 

  • GunsalusIC, MeeksJR, LipscombJD, DebrunnerP & MünckE (1974) In: HayaishiO (Ed) Molecular Mechanisms of Oxygen Activation: Bacterial Monooxygenases — The P-450 Cytochrome system (pp 559–613) Academic Press, New York.

    Google Scholar 

  • HanzlickRP (1981) Reactivity and toxicity among halogenated methanes and related compounds. Biochem. Pharmacol. 30: 3027–3030

    Google Scholar 

  • HardmanDJ (1991) Biotransformations of halogenated compounds. CRC Crit. Rev. in Biotech. 11: 1–40

    Google Scholar 

  • HartmansS, SchmuckleA, CookAM & LeisingerT (1986) Methyl chloride: naturally ocurring toxicant and C-1 growth substrate. J. Gen. Microbiol. 132: 1139–1142

    Google Scholar 

  • HineJ, DowellAM & SingleyJE (1956) Carbon dihalides as intermediates in the basic hydrolysis of haloforms. IV Relative reactivities of haloforms. J. Am. Chem. Soc. 78: 479–482

    Google Scholar 

  • Holliger C (1992) Reductive dehalogenation by anaerobic bacteria. Ph.D. dissertation, Wageningen Agricultural University, The Netherlands

  • JakobyWB & KeenJH (1977) A triple threat in detoxification: the glutathione S-transferases. Trends Biochem. Sci. 2: 229–231

    Google Scholar 

  • JencksWP (1975) In: MeisterA (Ed) Advances in enzymology and related areas of molecular biology 43: 219. John Wiley & Sons, New York

    Google Scholar 

  • KeenJH, HabigWH & JakobyWB (1976) Mechanism for the several activities of the glutathione S-transferases. J. Biol. Chem. 251: 6183–6188

    Google Scholar 

  • KleckaGM & GonsiorSJ (1984) Reductive dechlorination of chlorinated methanes and ethanes by reduced iron(II) porphyrins. Chemosphere 13: 391–402

    Google Scholar 

  • Kohler-StaubD, HartmansS, GälliR, SuterF & LeisingerT (1986) Evidence for identical dichloromethane dehalogenases in different methylotrophic bacteria. J. Gen. Microbiol. 132: 2837–2843

    Google Scholar 

  • Kohler-StaubD & LeisingerT (1985) Dichloromethane dehalogenase of Hyphomicrobium sp. strain DM2. J. Bacteriol. 162: 676–681

    Google Scholar 

  • KroneUE & ThauerRK (1992) Dehalogenation of trichlorofluoromethane (CFC-11) by Methanosarcina barkeri. FEMS Microbiol. Lett. 90: 201–204

    Google Scholar 

  • KroneUE, LauferK, ThauerRK & HogenkampHPC (1989a) Coenzyme F430 as a possible catalyst for the reductive dehalogenation of chlorinated hydrocarbons in methanogenic bacteria. Biochemistry 28: 10061–10065

    Google Scholar 

  • KroneUE, ThauerRK & HogenkampHPC (1989b) Reductive dehalogenation of chlorinated C1 hydrocarbons mediated by corrinoids. Biochemistry 28: 4908–4914

    Google Scholar 

  • KroneUE, ThauerRK, HogenkampHPC & SteinbachK (1991) Reductive formation of carbon monoxide from CCl4 and Freons 11, 12, and 13 catalyzed by corrinoids. Biochemistry 30: 2713–2719

    Google Scholar 

  • LamT & VilkerVL (1987) Biodehalogenation of bromotrichloromethane and 1,2- dibromo-3-chloropropane by Pseudomonas putida G786. Biotechnol. Bioeng. 29: 151–159

    Google Scholar 

  • LaRocheSA & LeisingerT (1990) Sequence analysis and expression of the bacterial dichloromethane dehalogenase structural gene, a member of the glutathione S-transferase supergene family. J. Bacteriol. 172: 164–171

    Google Scholar 

  • LcuschnerF, NewmanBW & HuebscherF (1983) Report on subacute toxicological studies with several fluorocarbons in rats and dogs by inhalation. Arzneim.-Forsch. 33: 1475–1476

    Google Scholar 

  • LiuS, ZhangP, XinhuaJ, JohnsonWW, GillilandGL & ArmstrongRN (1992) Contribution of tyrosine 6 to the catalytic mechanism of isozyme 3–3 of glutathione S-transferase. J. Biol. Chem. 267: 4296–4299

    Google Scholar 

  • Logan MSP, Newman LM, Schanke CA & Wackett LP (1992) Co-substrate effects in reductive dehalogenation by Pseudomonas putida G786 expressing cytochrome P-450CAM. Biodegradation (submitted)

  • LukeBT & LoewGH (1986) A theoretical investigation of the first step in the metabolic reduction of halogenated methanes by cytochrome P-450. Internat. J. Quant. Chem.: Quant. Biol. Symp. 12: 99–112

    Google Scholar 

  • MabeyW & MillT (1978) Critical review of hydrolysis of organic coumpounds in water under environmental conditions. J. Phys. Chem. Ref. Data 7: 383–415

    Google Scholar 

  • MarchJ (1985) Advanced organic chemistry: reactions, mechanisms and structure. John Wiley & Sons, New York

    Google Scholar 

  • MeyerDJ, ColesB, PembleSE, GilmoreKS, FraserGM & KettererB (1991) Theta, a new class of glutathione transferases purified from rat and man. Biochem. J. 274: 409–414

    Google Scholar 

  • MeyerO & SchlegelHG (1983) Biology of aerobic carbon monoxide-oxidizing bacteria. Ann. Rev. Microbiol. 37: 277–310

    Google Scholar 

  • MikesellMD & BoydSA (1990) Dechlorination of chloroform by Methanosarcina strains. Appl. Environ. Microbiol. 56: 1198–1201

    Google Scholar 

  • Moelwyn-HughesEA (1949) Kinetics of certain reactions between methyl halides and anions in water. Proc. Royal Soc. (London) Ser. A 196: 540–553

    Google Scholar 

  • MohnWW & TiedjeJM (1990) Strain DCB-1 conserves energy for growth from reductive dehalogenation coupled to formate oxidation. Arch. Microbiol. 153: 267–271

    Google Scholar 

  • MohnWW & TiedjeJM (1992) Microbial reductive dehalogenation Microbiol. Rev. 56: 482–507

    CAS  PubMed  Google Scholar 

  • NeidlemanSL & GeigertJ (1986) Biohalogenation: Principles, Basic Roles and Applications. Ellis Horwood Ltd, Chichester, UK

    Google Scholar 

  • OldenhuisR, OedzesJY, van derWaardeJJ & JanssenDB (1991) Kinetics of chlorinated hydrocarbon degradation by Methylosinus trichorsporium OB3b and toxicity of trichloroethylene. Appl. Environ. Microbiol. 57: 7–14

    Google Scholar 

  • PatelRN, HouCT, LaskinAI & FelixA (1982) Microbial oxidation of hydrocarbons: properties of a soluble methane monooxygenase from a facultative methane-utilizing organism, Methylobacterium sp. strain CRL-26. Appl. Environ. Microbiol. 44: 1130–1137

    Google Scholar 

  • PfaltzA, JuanB, FasslerA, EschenmoserA, JaenchenR, GillesHH, DiekertG & ThauerRK (1982) Zur kenntnis des faktors F430 aus Methanogenen Bakterien: Struktur des pophinoiden Ligandsystems. Helv. Chim. Acta 65: 828–865

    Google Scholar 

  • PoulosTL, FinzelBC, GunsalusIC, WagnerGC & KrautJ (1985) The 2.6 Å crystal structure of Pseudomonas putida cytochrome P-450. J. Biol. Chem. 260: 16122–16130

    Google Scholar 

  • PoulosTL & RaagR (1992) Cytochrome P-450CAM: crystallography, oxygen activation, and electron transfer. FASEB J. 6: 674–679

    Google Scholar 

  • RagsdaleSW & WoodHG (1985) Acetate biosynthesis by acetogenic bacteria. J. Biol. Chem. 260: 3970–3977

    Google Scholar 

  • RasmussenRA, KhalilMAR & DallugeRW (1980) Concentration and distribution of methyl chloride in the atmosphere. J. Geophys. Res. 85: 7350–7356

    Google Scholar 

  • RaybuckSA, BastianNR, ZydowskyLD KobayashiK, FlossHG, Orme-JohnsonWH & WalshCT (1987) Nickel containing CO dehydrogenase catalyzes reversible decarbonylation of acetyl CoA with retention of stereochemistry at the methyl group. J. Am. Chem. Soc. 109: 3171–3173

    Google Scholar 

  • ReinemerP, DirrHW, LadensteinR, SchafferJ, GallayO & HuberR (1991) The three dimensional structure of class π glutathione S-transferase in complex with glutathione sulfonate at 2.3 Å resolution. EMBO J. 10: 1997–2005

    Google Scholar 

  • Roberts AL (1991) Dehalogenation reactions of polyhalogenated alkanes in aquatic environments. Ph. D. Dissertation Massachusetts Institute of Technology

  • Roberts AL & Gschwend PM (1992) Nucleophilic substitution reactions of dihalomethanes with the bisulfide ion HS-. Environ. Sci. Technol. (in press)

  • SchankeCA & WackettLP (1992) Environmental reductive elimination reactions of polychlorinated ethanes mimicked by transition-metal coenzymes. Environ. Sci. Technol. 26: 830–833

    Google Scholar 

  • ScholtzR, WackettLP, EgliC, CookAM & LeisingerT (1988) Dichloromethane dehalogenase with improved catalytic activity isolated from a fast growing dichloromethane-utilizing bacterium. J. Bacteriol. 170: 5698–5704

    Google Scholar 

  • SchrauzerGN & Deutsch (1969) Reactions of cobalt(I) supernucleophiles. The alkylation of vitamin B12s, cobaloximes(I) and related compounds. J. Am. Chem. Soc. 91: 3341–3350

    Google Scholar 

  • SligarSG, FilipovicD & StaytonPS (1991) Mutagenesis of cytochrome P-450CAM and b 5. Met. Enzymol206: 31–49

    Google Scholar 

  • SligarSG & GunsalusIC (1976) A thermodynamic model of regulation: modulation of redox equilibria in camphor monooxygenase. Proc. Natl. Acad. Sci. USA 73: 1078–1082

    Google Scholar 

  • SmithRF & SmithTF (1990) Automatic generation of primary sequence patterns from sets of related sequences. Proc. Natl. Acad. Sci. USA 87: 118–122

    Google Scholar 

  • StromeyerSA, WinkelbauerW, KohlerH, CookAM & LeisingerT (1991) Dichloromethane utilized by an anaerobic mixed culture: acetogenesis and methanogenesis. Biodegradation 2: 129–137

    Google Scholar 

  • StuckiG, BrunnerW, StaubD, & LeisingerT (1981a) Microbial degradation of chlorinated C1 and C2 hydrocarbons. In: LeisingerT & CookAM (Eds) Microbial Degradation of Xenobiotics and Recalcitrant Compounds (pp 131–137). Academic Press, New York

    Google Scholar 

  • StuckiG, GälliR, EbersoldHR & LeisingerT. (1981b) Dehalogenation of dichloromethane by cell extracts of Hyphomicrobium DM2. Arch. Microbiol. 130: 366–371

    Google Scholar 

  • TiedjeJM, BoydSA & FathepureBZ (1987) Anaerobic degradation of chlorinated aromatic compounds. Dev. Ind. Microbiol. 27: 117–127

    Google Scholar 

  • TrauneckerJ, PreubA & DiekertG (1991) Isolation and characterization of a methyl chloride utilizing strictly anaerobic bacterium. Arch. Microbiol. 156: 416–421

    Google Scholar 

  • VanelliT, LoganM, ArcieroDM, & HooperAB (1990) Degradation of halogenated aliphatic compounds by the ammoniaoxidizing bacterium Nitrosomonas europaea. Appl. Environ. Microbiol. 56: 1169–1171

    Google Scholar 

  • VogelTM, CriddleCS & McCartyPL (1987) Transformations of halogenated aliphatic compounds. Environ. Sci. Technol. 21: 711–736

    Google Scholar 

  • WadeRS & CastroCE (1973) Oxidation of iron(II) porphyrins by alkyl halides. J. Am. Chem. Soc. 95: 226–230

    Google Scholar 

  • WalshCT (1979) Enzymatic Reaction Mechanisms (pp 24–48). WH Freeman & Company, San Francisco

    Google Scholar 

  • WolfCR, KingLJ & ParkeDV (1978) The anaerobic dechlorination of trichlorofluoromethane by rat liver preparations in vitro. Chem.-Biol. Interact. 21: 277–288

    Google Scholar 

  • WolfCR, MansuyD, NastaincyzkW, DeutschmannG & UllrichV (1977) The reduction of polyhalogenated methanes by liver microsomal P-450. Mol. Pharmacol. 13: 698–705

    Google Scholar 

  • WolfeRS (1985) Unusual coenzymes of methanogenesis. Trends Biochem. Sci. 10: 396–399

    Google Scholar 

  • WoodJM, KennedyFS & WolfeRS (1968) The reaction of multihalogenated hydrocarbons with free and bound reduced vitamin B12. Biochemistry 7: 1707–1713

    Google Scholar 

  • WoodJM, MouraI, MouraJJG, SantosMH, XavierAV, LeGallJ & ScandellariM (1982) Role of vitamin B12 in methyl transfer for methane biosynthesis of Methanosarcina barkeri. Science 216: 303–305

    Google Scholar 

  • WuosmaaAM & HagerLP (1990) Methyl chloride transferase: a carbocation route for the synthesis of halometabolites. Science 249: 160–162

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wackett, L.P., Logan, M.S.P., Blocki, F.A. et al. A mechanistic perspective on bacterial metabolism of chlorinated methanes. Biodegradation 3, 19–36 (1992). https://doi.org/10.1007/BF00189633

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00189633

Key words

Navigation