Skip to main content
Log in

Human T-Lymphotropic Virus Type 1 (HTLV-1): Persistence and Immune Control

  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

The human retrovirus human T-lymphotropic virus type 1 (HTLV-1) is associated with two distinct types of disease: the malignancy known as adult T-cell leukemia and a range of chronic inflammatory conditions including the central nervous system disease HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Until recently, it was believed that HTLV-1 was largely latent in vivo. However, evidence from a number of types of experiments shows that HTLV-1 persistently expresses its genes, and that the “set point” of an individual’s proviral load of HTLV-1 is mainly determined by the efficiency of that individual’s cellular immune response to the virus.These conclusions have two main consequences. First, HTLV-1 may be vulnerable to antiretroviral drug therapy or immunotherapy. Second, HTLV-1 infection has become a useful system to analyze the determinants of the efficiency of the antiviral immune response. Society of Hematology

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Green PL, Chen ISY. Human T lymphotropic viruses types 1 and 2. In Knipe, DM, Howley PM, eds,Fields Virology. 4th ed. Philadelphia: Lippincott Williams and Wilkins; 2001:1941–1969.

    Google Scholar 

  2. Hollsberg P. Mechanisms of T-cell activation by human T-cell lymphotropic virus type I.Microbiol Mol Biol Rev. 1999;63:308–333.

    PubMed  PubMed Central  CAS  Google Scholar 

  3. Yoshida M. Multiple viral strategies of HTLV-1 for dysregulation of cell growth control.Annu Rev Immunol. 2001;19:475–496.

    Article  CAS  PubMed  Google Scholar 

  4. Johnson JM, Harrod R, Franchini G. Molecular biology and pathogenesis of the human T-cell leukaemia/lymphotropic virus Type-1 (HTLV-1).Int J Exp Pathol. 2001;82:135–147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Albrecht B, Lairmore MD. Critical role of human T-lymphotropic virus type 1 accessory proteins in viral replication and pathogenesis.Microbiol Mol Biol Rev. 2002;66:396–406, Table of contents.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Uchiyama T. Human T cell leukemia virus type I (HTLV-I) and human diseases.Annu Rev Immunol. 1997;15:15–37.

    Article  CAS  PubMed  Google Scholar 

  7. Watanabe T. HTLV-1-associated diseases.Int J Hematol. 1997;66:257–278.

    Article  CAS  PubMed  Google Scholar 

  8. Gessain A, Barin F, Vernant JC, et al. Antibodies to human T-lymphotropic virus type-I in patients with tropical spastic paraparesis.Lancet. 1985;2:407–410.

    Article  CAS  PubMed  Google Scholar 

  9. Osame M, Usuku K, Izumo S, et al. HTLV-I associated myelopathy, a new clinical entity.Lancet. 1986;1:1031–1032.

    Article  CAS  PubMed  Google Scholar 

  10. Nakagawa M, Izumo S, Ijichi S, et al. HTLV-I-associated myelopathy: analysis of 213 patients based on clinical features and laboratory findings.J Neurovirol. 1995;1:50–61.

    Article  CAS  PubMed  Google Scholar 

  11. Mochizuki M, Watanabe T, Yamaguchi K, et al. Uveitis associated with human T lymphotropic virus type I: seroepidemiologic, clinical, and virologic studies.J Infect Dis. 1992;166:943–944.

    Article  CAS  PubMed  Google Scholar 

  12. Morgan OS, Rodgers-Johnson P, Mora C, Char G. HTLV-1 and polymyositis in Jamaica.Lancet. 1989;2:1184–1187.

    Article  CAS  PubMed  Google Scholar 

  13. LaGrenade L, Hanchard B, Fletcher V, Cranston B, Blattner W. Infective dermatitis of Jamaican children: a marker for HTLV-I infection.Lancet. 1990;336:1345–1347.

    Article  CAS  PubMed  Google Scholar 

  14. Nishioka K, Maruyama I, Sato K, Kitajima I, Nakajima Y, Osame M. Chronic inflammatory arthropathy associated with HTLV-I.Lancet. 1989;1:441.

    Article  CAS  PubMed  Google Scholar 

  15. Hanon E, Stinchcombe JC, Saito M, et al. Fratricide among CD8(+) T lymphocytes naturally infected with human T cell lymphotropic virus type I.Immunity. 2000;13:657–664.

    Article  CAS  PubMed  Google Scholar 

  16. Nagai M, Brennan MB, Sakai JA, Mora CA, Jacobson S. CD8(+) T cells are an in vivo reservoir for human T-cell lymphotropic virus type I.Blood. 2001;98:1858–1861.

    Article  CAS  PubMed  Google Scholar 

  17. Lehky TJ, Fox CH, Koenig S, et al. Detection of human T-lymphotropic virus type I (HTLV-I) tax RNA in the central nervous system of HTLV-I-associated myelopathy/tropical spastic paraparesis patients by in situ hybridization.Ann Neurol. 1995;37:167–175.

    Article  CAS  PubMed  Google Scholar 

  18. Matsuoka E, Takenouchi N, Hashimoto K, et al. Perivascular T cells are infected with HTLV-I in the spinal cord lesions with HTLV-I-associated myelopathy/tropical spastic paraparesis: double staining of immunohistochemistry and polymerase chain reaction in situ hybridization.Acta Neuropathol (Berl). 1998;96:340–346.

    Article  CAS  Google Scholar 

  19. Southern SO, Southern PJ. Persistent HTLV-I infection of breast luminal epithelial cells: a role in HTLV transmission?Virology. 1998;241:200–214.

    Article  CAS  PubMed  Google Scholar 

  20. Ijichi S, Izumo S, Eiraku N, et al. An autoaggressive process against bystander tissues in HTLV-I-infected individuals: a possible pathomechanism of HAM/TSP.Med Hypotheses. 1993;41:542–547.

    Article  CAS  PubMed  Google Scholar 

  21. Daenke S, Bangham CR. Do T cells cause HTLV-1-associated disease? A taxing problem.Clin Exp Immunol. 1994;96:179–181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yoshida M, Osame M, Kawai H, et al. Increased replication of HTLV-I in HTLV-I-associated myelopathy.Ann Neurol. 1989;26:331–335.

    Article  CAS  PubMed  Google Scholar 

  23. Gessain A, Saal F, Gout O, et al. High human T-cell lymphotropic virus type I proviral DNA load with polyclonal integration in peripheral blood mononuclear cells of French West Indian, Guianese, and African patients with tropical spastic paraparesis.Blood. 1990;75:428–433.

    PubMed  CAS  Google Scholar 

  24. Kira J, Koyanagi Y, Yamada T, et al. Increased HTLV-I proviral DNA in HTLV-I-associated myelopathy: a quantitative polymerase chain reaction study.Ann Neurol. 1991;29:194–201.

    Article  CAS  PubMed  Google Scholar 

  25. Kubota R, Fujiyoshi T, Izumo S, et al. Fluctuation of HTLV-I proviral DNA in peripheral blood mononuclear cells of HTLV-I-associated myelopathy.J Neuroimmunol. 1993;42:147–154.

    Article  CAS  PubMed  Google Scholar 

  26. Nagai M, Usuku K, Matsumoto W, et al. Analysis of HTLV-I proviral load in 202 HAM/TSP patients and 243 asymptomatic HTLV-I carriers: high proviral load strongly predisposes to HAM/TSP.J Neurovirol. 1998;4:586–593.

    Article  CAS  PubMed  Google Scholar 

  27. Matsuzaki T, Nakagawa M, Nagai M, et al. HTLV-I proviral load correlates with progression of motor disability in HAM/TSP: analysis of 239 HAM/TSP patients including 64 patients followed up for 10 years.J Neurovirol. 2001;7:228–234.

    Article  CAS  PubMed  Google Scholar 

  28. Taylor GP, Tosswill JH, Matutes E, et al. Prospective study of HTLV-I infection in an initially asymptomatic cohort.J Acquir Immune Defic Syndr. 1999;22:92–100.

    Article  CAS  PubMed  Google Scholar 

  29. Manns A, Miley WJ, Wilks RJ, et al. Quantitative proviral DNA and antibody levels in the natural history of HTLV-I infection.J Infect Dis. 1999;180:1487–1493.

    Article  CAS  PubMed  Google Scholar 

  30. Daenke S, Nightingale S, Cruickshank JK, Bangham CR. Sequence variants of human T-cell lymphotropic virus type I from patients with tropical spastic paraparesis and adult T-cell leukemia do not distinguish neurological from leukemic isolates.J Virol. 1990;64:1278–1282.

    PubMed  PubMed Central  CAS  Google Scholar 

  31. Bangham CR. The immune response to HTLV-I.Curr Opin Immunol. 2000;12:397–402.

    Article  CAS  PubMed  Google Scholar 

  32. Slattery JP, Franchini G, Gessain A. Genomic evolution, patterns of global dissemination, and interspecies transmission of human and simian T-cell leukemia/lymphotropic viruses.Genome Res. 1999;9:525–540.

    PubMed  CAS  Google Scholar 

  33. Furukawa Y, Yamashita M, Usuku K, Izumo S, Nakagawa M, Osame M. Phylogenetic subgroups of human T cell lymphotropic virus (HTLV) type I in the tax gene and their association with different risks for HTLV-I-associated myelopathy/tropical spastic paraparesis.J Infect Dis. 2000;182:1343–1349.

    Article  CAS  PubMed  Google Scholar 

  34. Taylor GP, Hall SE, Navarrete S, et al. Effect of lamivudine on human T-cell leukemia virus type 1 (HTLV-1) DNA copy number, T-cell phenotype, and anti-tax cytotoxic T-cell frequency in patients with HTLV-1-associated myelopathy.J Virol. 1999;73:10289–10295.

    PubMed  PubMed Central  CAS  Google Scholar 

  35. Bangham CRM. The immune control and cell to cell spread of HTLV-1.J Gen Virol. In press.

  36. Jacobson S. Immunopathogenesis of human T cell lymphotropic virus type I-associated neurologic disease.J Infect Dis. 2002;186(suppl 2):S187-S192.

    Article  PubMed  Google Scholar 

  37. Yu F, Itoyama Y, Fujihara K, Goto I. Natural killer (NK) cells in HTLV-I-associated myelopathy/tropical spastic paraparesisdecrease in NK cell subset populations and activity in HTLV-I seropositive individuals.J Neuroimmunol. 1991;33:121–128.

    Article  CAS  PubMed  Google Scholar 

  38. Saito M, Braud VM, Goon P, et al. Low frequency of CD94/ NKG2A+ T lymphocytes in patients with HTLV-1-associated myelopathy/tropical spastic paraparesis, but not in asymptomatic carriers.Blood. 2003;102:577–584.

    Article  CAS  PubMed  Google Scholar 

  39. McMichael AJ. Principles of immunology. In: Warrell DA, Cox TM, Firth JD, Benz EJ, eds,Oxford Textbook of Medicine. 4th ed. Oxford: Oxford University Press; 2003:131–144.

    Google Scholar 

  40. Umehara F, Izumo S, Nakagawa M, et al. Immunocytochemical analysis of the cellular infiltrate in the spinal cord lesions in HTLVI-associated myelopathy.J Neuropathol Exp Neurol. 1993;52:424–430.

    Article  CAS  PubMed  Google Scholar 

  41. Iwasaki Y, Ohara Y, Kobayashi I, Akizuki S. Infiltration of helper/ inducer T lymphocytes heralds central nervous system damage in human T-cell leukemia virus infection.Am J Pathol. 1992;140:1003–1008.

    PubMed  PubMed Central  CAS  Google Scholar 

  42. Niewiesk S, Daenke S, Parker CE, et al. The transactivator gene of human T-cell leukemia virus type I is more variable within and between healthy carriers than patients with tropical spastic paraparesis.J Virol. 1994;68:6778–6781.

    PubMed  PubMed Central  CAS  Google Scholar 

  43. Bangham CRM, Kermode AG, Hall SE, Daenke S. The cytotoxic T-lymphocyte response to HTLV-I: the main determinant of disease?Semin Virol. 1996;7:41–48.

    Article  Google Scholar 

  44. Nowak MA, Bangham CR. Population dynamics of immune responses to persistent viruses.Science. 1996;272:74–79.

    Article  CAS  PubMed  Google Scholar 

  45. Jeffery KJ, Usuku K, Hall SE, et al. HLA alleles determine human T-lymphotropic virus-I (HTLV-I) proviral load and the risk of HTLV-I-associated myelopathy.Proc Natl Acad Sci U S A. 1999;96:3848–3853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jeffery KJ, Siddiqui AA, Bunce M, et al. The influence of HLA class I alleles and heterozygosity on the outcome of human T cell lymphotropic virus type I infection.J Immunol. 2000;165:7278–7284.

    Article  CAS  PubMed  Google Scholar 

  47. Vine AM, Witkover AD, Lloyd AL, et al. Polygenic control of human T lymphotropic virus type I (HTLV-I) provirus load and the risk of HTLV-I-associated myelopathy/tropical spastic paraparesis.J Infect Dis. 2002;186:932–939.

    Article  CAS  PubMed  Google Scholar 

  48. Cavrois M, Gessain A, Wain-Hobson S, Wattel E. Proliferation of HTLV-1 infected circulating cells in vivo in all asymptomatic carriers and patients with TSP/HAM.Oncogene. 1996;12:2419–2423.

    PubMed  CAS  Google Scholar 

  49. Asquith B, Bangham CR. An introduction to lymphocyte and viral dynamics: the power and limitations of mathematical analysis.Proc R Soc Lond B Biol Sci. 2003;270:1651–1657.

    Article  Google Scholar 

  50. Asquith B, Bangham CR. The dynamics of T-cell fratricide: application of a robust approach to mathematical modelling in immunology.J Theor Biol. 2003;222:53–69.

    Article  PubMed  Google Scholar 

  51. Okochi K, Sato H. Transmission of ATLV (HTLV-I) through blood transfusion.Princess Takamatsu Symp. 1984;15:129–135.

    PubMed  CAS  Google Scholar 

  52. Popovic M, Sarin PS, Robert-Gurroff M, et al. Isolation and trans mission of human retrovirus (human t-cell leukemia virus).Science. 1983;219:856–859.

    Article  CAS  PubMed  Google Scholar 

  53. Yamamoto N, Okada M, Koyanagi Y, Kannagi M, Hinuma Y. Transformation of human leukocytes by cocultivation with an adult T cell leukemia virus producer cell line.Science. 1982;217:737–739.

    Article  CAS  PubMed  Google Scholar 

  54. Fan N, Gavalchin J, Paul B, Wells KH, Lane MJ, Poiesz BJ. Infection of peripheral blood mononuclear cells and cell lines by cell-free human T-cell lymphoma/leukemia virus type I.J Clin Microbiol. 1992;30:905–910.

    PubMed  PubMed Central  CAS  Google Scholar 

  55. Goon PKC, Hanon E, Igakura T, et al. High frequencies of Th1-type CD4(+) T cells specific to HTLV-1 Env and Tax proteins in patients with HTLV-1-associated myelopathy/tropical spastic paraparesis.Blood. 2002;99:3335–3341.

    Article  CAS  PubMed  Google Scholar 

  56. Grakoui A, Bromley SK, Sumen C, et al. The immunological synapse: a molecular machine controlling T cell activation.Science. 1999;285:221–227.

    Article  CAS  PubMed  Google Scholar 

  57. Igakura T, Stinchcombe JC, Goon PK, et al. Spread of HTLV-I between lymphocytes by virus-induced polarization of the cytoskeleton.Science. 2003;299:1713–1716.

    Article  CAS  PubMed  Google Scholar 

  58. Schick P, Trepel F, Eder M, et al. Autotransfusion of 3H-cytidinelabelled blood lymphocytes in patients with Hodgkin’s disease and non-Hodgkin patients, II: exchangeable lymphocyte pools.Acta Haematol. 1975;53:206–218.

    Article  CAS  PubMed  Google Scholar 

  59. Pabst R, Binns RM, Rothkotter HJ, Westermann J. Quantitative analysis of lymphocyte fluxes in vivo.Curr Top Microbiol Immunol. 1993;184:151–159.

    PubMed  CAS  Google Scholar 

  60. Westermann J, Persin S, Matyas J, van der Meide P, Pabst R. IFNgamma influences the migration of thoracic duct B and T lymphocyte subsets in vivo. Random increase in disappearance from the blood and differential decrease in reappearance in the lymph.J Immunol. 1993;150:3843–3852.

    PubMed  CAS  Google Scholar 

  61. Westermann J, Puskas Z, Pabst R. Blood transit and recirculation kinetics of lymphocyte subsets in normal rats.Scand J Immunol. 1988;28:203–210.

    Article  CAS  PubMed  Google Scholar 

  62. Ford WL. Lymphocyte migration and immune responses.Prog Allergy. 1975;19:1–59.

    PubMed  CAS  Google Scholar 

  63. Moritoyo T, Izumo S, Moritoyo H, et al. Detection of human T-lymphotropic virus type I p40tax protein in cerebrospinal fluid cells from patients with human T-lymphotropic virus type I-associated myelopathy/tropical spastic paraparesis.J Neurovirol. 1999;5:241–248.

    Article  CAS  PubMed  Google Scholar 

  64. Hanon E, Hall S, Taylor GP, et al. Abundant tax protein expression in CD4+ T cells infected with human T- cell lymphotropic virus type I (HTLV-I) is prevented by cytotoxic T lymphocytes.Blood. 2000;95:1386–1392.

    PubMed  CAS  Google Scholar 

  65. Debacq C, Asquith B, Kerkhofs P, et al. Increased cell proliferation, but not reduced cell death, induces lymphocytosis in bovine leukemia virus-infected sheep.Proc Natl Acad Sci U S A. 2002;99:10048–10053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Asquith B, Debacq C, Macallan DC, Willems L, Bangham CR. Lymphocyte kinetics: the interpretation of labelling data.Trends Immunol. 2002;23:596–601.

    Article  CAS  PubMed  Google Scholar 

  67. Macallan DC, Asquith B, Irvine AJ, et al. Measurement and modeling of human T cell kinetics.Eur J Immunol. 2003;33:2316–2326.

    Article  CAS  PubMed  Google Scholar 

  68. Macallan DC, Fullerton CA, Neese RA, Haddock K, Park SS, Hellerstein MK. Measurement of cell proliferation by labeling of DNA with stable isotope-labeled glucose: studies in vitro, in animals, and in humans.Proc Natl Acad Sci U S A. 1998;95:708–713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Mohri H, Perelson AS, Tung K, et al. Increased turnover of T lym lymphocytes in HIV-1 infection and its reduction by antiretroviral therapy.J Exp Med. 2001;194:1277–1287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Levin MC, Lee SM, Kalume F, et al. Autoimmunity due to molecular mimicry as a cause of neurological disease.Nat Med. 2002;8:509–513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Goon PK, Igakura T, Hanon E, et al. High circulating frequencies of tumor necrosis factor alpha- and interleukin-2-secreting human T-lymphotropic virus type 1 (HTLV-1)-specific CD4+ T cells in patients with HTLV-1-associated neurological disease.J Virol. 2003;77:9716–9722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Jacobson S, Shida H, McFarlin DE, Fauci AS, Koenig S. Circulating CD8+ cytotoxic T lymphocytes specific for HTLV-I pX in patients with HTLV-I associated neurological disease.Nature. 1990;348:245–248.

    Article  CAS  PubMed  Google Scholar 

  73. Parker CE, Daenke S, Nightingale S, Bangham CR. Activated, HTLV-1-specific cytotoxic T-lymphocytes are found in healthy seropositives as well as in patients with tropical spastic paraparesis.Virology. 1992;188:628–636.

    Article  CAS  PubMed  Google Scholar 

  74. Parker CE, Nightingale S, Taylor GP, Weber J, Bangham CR. Circulating anti-Tax cytotoxic T lymphocytes from human T-cell leukemia virus type I-infected people, with and without tropical spastic paraparesis, recognize multiple epitopes simultaneously.J Virol. 1994;68:2860–2868.

    PubMed  PubMed Central  CAS  Google Scholar 

  75. Elovaara I, Koenig S, Brewah AY, Woods RM, Lehky T, Jacobson S. High human T cell lymphotropic virus type 1 (HTLV-1)-specific precursor cytotoxic T lymphocyte frequencies in patients with HTLV-1-associated neurological disease.J Exp Med. 1993;177:1567–1573.

    Article  CAS  PubMed  Google Scholar 

  76. Bieganowska K, Hollsberg P, Buckle GJ, et al. Direct analysis of viral-specific CD8+ T cells with soluble HLA- A2/Tax11-19 tetramer complexes in patients with human T cell lymphotropic virus-associated myelopathy.J Immunol. 1999;162:1765–1771.

    PubMed  CAS  Google Scholar 

  77. Daenke S, Kermode AG, Hall SE, et al. High activated and memory cytotoxic T-cell responses to HTLV-1 in healthy carriers and patients with tropical spastic paraparesis.Virology. 1996;217:139–146.

    Article  CAS  PubMed  Google Scholar 

  78. Kannagi M, Harada S, Maruyama I, et al. Predominant recognition of human T cell leukemia virus type I (HTLV-I) pX gene products by human CD8+ cytotoxic T cells directed against HTLV- I-infected cells.Int Immunol. 1991;3:761–767.

    Article  CAS  PubMed  Google Scholar 

  79. Pique C, Ureta-Vidal A, Gessain A, et al. Evidence for the chronic in vivo production of human T cell leukemia virus type I Rof and Tof proteins from cytotoxic T lymphocytes directed against viral peptides.J Exp Med. 2000;191:567–572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ishihara S, Okayama A, Stuver S, et al. Association of HTLV-I antibody profile of asymptomatic carriers with proviral DNA levels of peripheral blood mononuclear cells.J Acquir Immune Defic Syndr. 1994;7:199–203.

    PubMed  CAS  Google Scholar 

  81. Kira J, Nakamura M, Sawada T, et al. Antibody titers to HTLV-Ip40tax protein and gag-env hybrid protein in HTLV-I-associated myelopathy/tropical spastic paraparesis: correlation with increased HTLV-I proviral DNA load.J Neurol Sci. 1992;107:98–104.

    Article  CAS  PubMed  Google Scholar 

  82. Nagasato K, Nakamura T, Shirabe S, et al. Presence of serum antihuman T-lymphotropic virus type I (HTLV-I) IgM antibodies means persistent active replication of HTLV-I in HTLV-I-associated myelopathy.J Neurol Sci. 1991;103:203–208.

    Article  CAS  PubMed  Google Scholar 

  83. Niewiesk S, Daenke S, Parker CE, et al. Naturally occurring variants of human T-cell leukemia virus type I Tax protein impair its recognition by cytotoxic T lymphocytes and the transactivation function of Tax.J Virol. 1995;69:2649–2653.

    PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles R. M. Bangham.

About this article

Cite this article

Bangham, C.R.M. Human T-Lymphotropic Virus Type 1 (HTLV-1): Persistence and Immune Control. Int J Hematol 78, 297–303 (2003). https://doi.org/10.1007/BF02983553

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02983553

Key words

Navigation