Skip to main content
Log in

Gene-Marking studies of hematopoietic cells

  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Gene-marking studies were the first approved clinical protocols introducing exogenous genetic material into human cells. Such studies were never intended to provide direct therapeutic benefit. Instead, they were expected to provide information about normal cell biology and disease pathogenesis that could not be obtained in any other way. However, the information gained from such studies has had a significant impact on disease management. Gene-marking studies have provided valuable insights into the biology of the human stem cell, factors that influence the efficiency of gene transfer, mechanisms of relapse after stem cell transplantation, and the pharmacodynamics of adoptive cellular immunotherapy. With continuing advances in gene-marking technology, the value of the information provided by these studies increases, thereby ensuring their continued relevance to the field of gene transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Miller AD, Skotzko MJ, Rhoades K, et al. Simultaneous use of two retroviral vectors in human gene marking trials: feasibility and potential applications.Hum Gene Ther. 1992;3:619–624.

    Article  CAS  PubMed  Google Scholar 

  2. Brenner MK, Rill DR, Holladay MS, et al. Gene marking to determine whether autologous marrow infusion restores long-term hematopoiesis in cancer patients.Lancet. 1993;342:1134–1137.

    Article  CAS  PubMed  Google Scholar 

  3. Rosenberg SA, Blaese RM, Anderson WF. The N2-TIL human gene transfer protocol.Hum Gene Ther. 1990;1:73–92.

    Article  Google Scholar 

  4. Brenner M, Mirro J, Hurwitz C, et al. Autologous bone marrow transplant for children with AML in first complete remission: use of marker genes to investigate the biology of marrow reconstitution and the mechanism of relapse.Hum Gene Ther. 1991;2:137–159.

    Article  Google Scholar 

  5. Deisseroth AB, Kantarjian H, Talpaz M, et al. Autologous bone marrow transplantation for CML in which retroviral markers are used to discriminate between relapse which arises from systemic disease remaining after preparative therapy verses relapse due to residual leukaemia cells in autologous marrow: a pilot trial.Hum Gene Ther. 1991;2:359–376.

    Article  Google Scholar 

  6. Santana VM, Brenner MK, Ihle J, et al. A phase I trial of high-dose carboplatin and etoposide with autologous marrow support for treatment of relapse/refractory neuroblastoma without apparent bone marrow involvement: use of marker genes to investigate the biology of marrow reconstitution and the mechanism of relapse.Hum Gene Ther. 1991;2:273–286.

    Article  Google Scholar 

  7. Cornetta K, Tricot G, Broun ER, et al. Retroviral-mediated gene transfer of bone marrow cells during autologous bone marrow transplantation for acute leukaemia.Hum Gene Ther. 1992;3:305–318.

    Article  CAS  PubMed  Google Scholar 

  8. Dunbar CE, Nienhuis AW, Stewart FM, et al. Gene marking with retroviral vectors to study the feasibility of stem cell gene transfer and the biology of hemopoietic reconstitution after autologous transplantation in multiple myeloma, chronic myelogenous leukaemia or metastatic breast cancer.Hum Gene Ther. 1993;4:205–222.

    Article  CAS  PubMed  Google Scholar 

  9. Bjorkstrand B, Gahrton G, Siracdilber M, Ljungman P, Smith CJE, Xanthopoulos KG. Retroviral-mediated gene transfer of CD34-enriched bone marrow and peripheral blood cells during autologous stem cell transplantation for multiple myeloma.Hum Gene Ther. 1994;5:1279–1286.

    Article  CAS  PubMed  Google Scholar 

  10. Schuening F, Miller AD, Torok-Storb B, et al. Study on contribution of genetically marked peripheral blood repopulating cells to hematopoietic reconstitution after transplantation.Hum Gene Ther. 1994;5:1523–1534.

    Article  CAS  PubMed  Google Scholar 

  11. Stewart AK, Dube ID, Kamel Reid S, Keating A. A phase I study of autologous bone marrow transplantation with stem cell gene marking in multiple myeloma.Hum Gene Ther. 1995;6:107–110.

    Article  CAS  PubMed  Google Scholar 

  12. Gahrton G, Bjorkstrand B, Dilber MS, Sundman-Engberg B, Ljungman P, Smith CIE. Gene marking and gene therapy in multiple myeloma.Adv Exp Med Biol. 1998;451:493–497.

    CAS  PubMed  Google Scholar 

  13. Brenner MK, Rill DR, Moen RC, et al. Gene-marking to trace origin of relapse after autologous bone marrow transplantation.Lancet. 1993;341:85–86.

    Article  CAS  PubMed  Google Scholar 

  14. Brenner MK, Heslop HE, Rill D, et al. Gene transfer and bone marrow transplantation.Cold Spring Harb Symp Quant Biol. 1994;59:691–697.

    CAS  PubMed  Google Scholar 

  15. Rill DR, Santana VM, Roberts VM, et al. Direct demonstration that autologous bone marrow transplantation for solid tumours can return a multiplicity of tumorigenic cells.Blood. 1994;84:380–383.

    CAS  PubMed  Google Scholar 

  16. Deisseroth AB, Zu Z, Claxton D, et al. Genetic marking shows that Ph+ cells present in autologous transplants of chronic myelogenous leukemia (CML) contribute to relapse after autologous bone marrow in CML.Blood. 1994;8:3068–3076.

    Google Scholar 

  17. Cornetta K, Srour EF, Moore A, et al. Retroviral gene transfer in autologous bone marrow transplantation for adult acute leukemia.Hum Gene Ther. 1996;7:1323–1329.

    Article  CAS  PubMed  Google Scholar 

  18. Dunbar CE, Cottler-Fox M, O’Shaunessy JA, et al. Retrovirally marked CD34-enriched peripheral blood and marrow cells contribute to long term engraftment after autologous transplantation.Blood. 1995;85:3048–3057.

    CAS  PubMed  Google Scholar 

  19. Brenner MK. Gene marking.Hum Gene Ther. 1996;7:1927–1936.

    Article  CAS  PubMed  Google Scholar 

  20. Brenner MK, Krance R, Heslop HE, et al. Assessment of the efficacy of purging by using gene marked autologous marrow transplantation for children with AML in first complete remission.Hum Gene Ther. 1994;5:481–499.

    Article  CAS  PubMed  Google Scholar 

  21. Brenner MK. Emerging applications of gene transfer in the hematopoietic cancers.J Pediatr Hematol Oncol. 1997;19:1–6.

    Article  CAS  PubMed  Google Scholar 

  22. Klingemann HG, Eaves CJ, Barnett MJ, et al. Transplantation of patients with high risk acute myeloid leukaemia in first remission with autologous marrow cultured in interleukin-2 followed by interleukin-2 administration.Bone Marrow Transplant. 1994;14:389–396.

    CAS  PubMed  Google Scholar 

  23. Selvaggi KJ, Wilson JW, Mills LE, et al. Improved outcome for high risk acute myeloid leukaemia patients using autologous bone marrow transplantation and monoclonal antibody-purged bone marrow.Blood. 1994;83:1698.

    CAS  PubMed  Google Scholar 

  24. Rill DR, Holliday M, Heslop HE, et al. Long term transgene expression by human hemopoietic cells in vivo [abstract].Blood. 1997;90:405a.

    Google Scholar 

  25. Heslop HE, Rill DR, Horwitz EM, Contant CF, Krance RA, Brenner MK. Gene marking to assess tumour contamination in stem cell grafts for acute myeloid leukaemia. In: Dicke KA, Keating A, eds.Autologous Blood and Marrow Transplantation, Charlottesville, VA: Carden Jennings Publishing, 1999;513–520.

    Google Scholar 

  26. Brugger W, Heinfeld S, Berensen RJ, Mertelsmann R, Kanz L. Reconstitution of hematopoiesis after high dose chemotherapy by autologous progenitor cells generatedex vivo.N Engl J Med. 1995;333:283–287.

    Article  CAS  PubMed  Google Scholar 

  27. Stewart AK, Sutherland DR, Nanji S, et al. Engraftment of gene-marked hematopoietic progenitors in myeloma patients after transplant of autologous long-term marrow cultures.Hum Gene Ther. 1999;10:1953–1964.

    Article  CAS  PubMed  Google Scholar 

  28. Bienzle D, Abrams-Ogg AC, Dick JE, et al. Autologous transplantation of canine long-term marrow culture cells genetically marked by retroviral rectors.Blood. 1992;79:356–364.

    Google Scholar 

  29. Rill DR, Moen RC, Buschle M, et al. An approach for the analysis of relapse and marrow reconstitution after autologous marrow transplantation using retrovirus-mediated gene transfer.Blood. 1992;79:2694–2700.

    CAS  PubMed  Google Scholar 

  30. Dunbar CE, Bodine DM, Sorrentino B, et al. Gene transfer into hematopoietic cells: implications for cancer therapy.Ann NY Acad Sci. 1994;716:216–224.

    Article  CAS  PubMed  Google Scholar 

  31. Bodine DM, Moritz T, Donahue RE, et al. Long term in-vivo expression of a murine adenosine deaminase gene in rhesus monkey hematopoietic cells of multiple lineages after retroviral mediated gene transfer into CD34+ bone marrow cells.Blood. 1993;82:1975–1980.

    CAS  PubMed  Google Scholar 

  32. Donahue RE, Kessler SW, Bodine D, et al. Helper virus induced T cell lymphoma in non-human primates after retroviral mediated gene transfer.J Exp Med. 1992;176:1125–1135.

    Article  CAS  PubMed  Google Scholar 

  33. Kobayashi M, Laver JH, Kato T, et al. Thrombopoietin supports proliferation of human primitive haematopoietic cells in synergy with steel factor and/or interleukin-3.Blood. 1996;87:3563–3570.

    Google Scholar 

  34. Piacibello W, Sanavio F, Garetto L, et al. Extensive amplification and self renewal of human primitive hematopoietic stem cells from cord blood.Blood. 1997;89:2644–2653.

    CAS  PubMed  Google Scholar 

  35. Ku H, Yonemura Y, Kaushansky K, et al. Thrombopoietin, the ligand for the Mpl receptor, synergizes with steel factor and other early acting cytokines in supporting proliferation of primitive hematopoietic progenitors of mice.Blood. 1996;97:4544–4551.

    Google Scholar 

  36. Bodine DM, Seidel NE, Orlic D. Bone marrow collected 14 days after in vivo administration of granulocyte colony-stimulating factor and stem cell factor to mice has a 10-fold more repopulating ability than untreated bone marrow.Blood. 1996;88:89–97.

    CAS  PubMed  Google Scholar 

  37. Hanenberg H, Xiao XL, Dilloo D, Hashino K, Kato I, Williams DA. Co-localization of retrovirus and target cells on specific fibronectin adhesion domains for increased genetic transduction of mammalian cells.Nat Med. 1996;2:876–882.

    Article  CAS  PubMed  Google Scholar 

  38. Arbonour R, Williams DA, Einhorn L, et al. Efficient retrovirus-mediated transfer of the multidrug resistance 1 gene into autologous human long-term repopulating hematopoietic stem cells.Nat Med. 2000;6:652–658.

    Article  CAS  Google Scholar 

  39. Hesdorffer C, Ayello J, Ward M, et al. Phase 1 trial of retroviral-mediated transfer of the human MDRI gene as marrow chemoprotection in patients undergoing high-dose chemotherapy and autologous stem-cell transplantation.J Clin Oncol. 1998;16:165–172.

    CAS  PubMed  Google Scholar 

  40. Hanania EG, Giles RE, Kavanagh J, et al. Results of MDR-1 vector modification trial indicate that granulocyte/macrophage colony-forming unit cells do not contribute to post-transplant haematopoietic recovery following intensive systemic therapy.Proc Natl Acad Sci USA. 1996;93:15346–15351.

    Article  CAS  PubMed  Google Scholar 

  41. Moscow JA, Huang H, Carter C, et al. Engraftment of MDRI and NeoR gene-transduced hematopoietic cells after breast cancer chemotherapy.Blood 1999;94:52–61.

    CAS  PubMed  Google Scholar 

  42. Ward M, Richardson C, Pioli P, et al. Transfer and expression of the human multiple drug resistance gene in human CD34+ cells.Blood. 1994;84:1408–1414.

    CAS  PubMed  Google Scholar 

  43. Pawliuk R, Kay R, Lansdorp P, et al. Selection of retrovirally transduced hematopoietic cells using CD24 as marker of gene transfer.Blood. 1994;84:2868–2877.

    CAS  PubMed  Google Scholar 

  44. Ruggieri L, Aiuti A, Salomoni M, et al. Cell-surface marking of CD (34+) restricted phenotypes of human hematopoietic progenitor cells by retrovirus-mediated gene transfer.Hum Gene Ther. 1997;8:1611–1623.

    Article  CAS  PubMed  Google Scholar 

  45. Bauer TR Jr, Hickstein DD. Transduction of human hematopoietic cells and cell lines using a retroviral vector containing a modified murine CD4 reporter gene.Hum Gene Ther. 1997;8:243–252.

    Article  CAS  PubMed  Google Scholar 

  46. Emmons RV, Doren S, Zujewski J, et al. Retroviral gene transduction of adult peripheral blood or marrow-derived CD34+ cells for six hours without growth factors or on autologous stroma does not improve marking efficiency assessed in vivo.Blood. 1997;89:4040–4046.

    CAS  PubMed  Google Scholar 

  47. Rosenberg SA, Aebersold P, Cornetta K, et al. Gene transfer into humans: immunotherapy of patients with advanced melanoma, using tumor infiltrating lymphocytes modified by retroviral gene transduction.N Engl J Med. 1990;323:570–578.

    Article  CAS  PubMed  Google Scholar 

  48. Fisher B, Packard BS, Read EJ, et al. Tumor localization of adoptively transferred indium-111 labeled tumour infiltrating lymphocytes in patients with metastatic melanoma.J Clin Oncol. 1989;7:250–261.

    CAS  PubMed  Google Scholar 

  49. Griffin KD, Read EJ, Carrasquillo JA, et al. In vivo distribution of adoptively transferred indium-111 labeled tumor infiltrating lymphocytes and peripheral blood lymphocytes in patients with metastatic melanoma.J Natl Cancer Inst. 1989;81:1709–1717.

    Article  Google Scholar 

  50. Cai Q, Rubin JT, Lotze MT. Genetically marking human cells: results of the first clinical gene transfer studies.Canc Gene Ther. 1995;2:125–136.

    CAS  Google Scholar 

  51. Aebersold P, Kasid A, Rosenberg SA. Selection of gene marked tumor infiltrating lymphocytes from post-treatment biopsies: a case study.Hum Gene Ther. 1990;1:373–384.

    Article  CAS  PubMed  Google Scholar 

  52. Morgan RA, Cornetta K, Anderson WF. Application of the polymerase chain reaction in retroviral-mediated gene transfer and the analysis of gene-marked TIL cells.Hum Gene Ther. 1990;1:135–149.

    Article  CAS  PubMed  Google Scholar 

  53. Riddell SR, Elliot M, Lewinsohn DA, et al. T-cell mediated rejection of gene-modified HIV-specific cytotoxic T lymphocytes in HIV-infected patients.Nature Med. 1996;2:216–223.

    Article  CAS  PubMed  Google Scholar 

  54. Rooney CM, Smith CA, Ng C, et al. Use of gene-modified virusspecific T lymphocytes to control Epstein-Barr virus related lymphoproliferation.Lancet. 1995;345:9–13.

    Article  CAS  PubMed  Google Scholar 

  55. Walter EA, Greenberg PD, Gilbert MJ, et al. Reconstitution of cellular immunity against cytomegalovirus in recipients of allogeneic bone marrow by transfer of T-cell clones from the donor.N Engl J Med. 1995;333:1038–1044.

    Article  CAS  PubMed  Google Scholar 

  56. Heslop HE, Ng CYC, Li C, Smith CA, et al. Long term restoration of immunity against Epstein-Barr virus infection by adoptive transfer of gene-modified virus-specific T lymphocytes.Nat Med. 1996;2:551–555.

    Article  CAS  PubMed  Google Scholar 

  57. Rooney CM, Smith CA, Ng CYC, et al. Infusion of cytotoxic T cells for the prevention and treatment of Epstein-Barr virus-induced lymphoma in allogeneic transplant recipients.Blood. 1998;92:1549–1555.

    CAS  PubMed  Google Scholar 

  58. Roskrow MA, Suzuki N, Gan Y-J, et al. EBV-specific cytotoxic T lymphocytes for the treatment of patients with EBV positive relapsed Hodgkin’s disease.Blood. 1998;91:2925–2934.

    CAS  PubMed  Google Scholar 

  59. Merrouche Y, Negrier S, Bain C, et al. Clinical application of retroviral gene transfer in oncology: results of a French study with tumor-infiltrating lymphocytes transduced with the gene of resistance to neomycin.J Clin Oncol. 1995;13:410–418.

    CAS  PubMed  Google Scholar 

  60. Economou JS, Belldegrun AS, Glaspy J, et al. In vivo trafficking of adoptively transferred interleukin-2 expanded tumor-infiltrating lymphocytes and peripheral blood lymphocytes: results of a double gene marking trial.J Clin Invest. 1996;97:515–521.

    Article  CAS  PubMed  Google Scholar 

  61. Brodie SJ, Lewinsohn DA, Patterson BK, et al. In vivo migration and function of transferred HIV-1 specific cytotoxic T cells.Nat Med. 1999;5:34–41.

    Article  CAS  PubMed  Google Scholar 

  62. Walker RE, Carter CS, Muul L, et al. Peripheral expansion of preexisting mature T cells is an important means of CD4+ T-cell regeneration in HIV-infected adults.Nat Med. 1998;4:852–856.

    Article  CAS  PubMed  Google Scholar 

  63. Smith CA, Ng CYC, Heslop HE, et al. Production of genetically modified EBV-specific cytotoxic T cells for adoptive transfer to patients at high risk of EBV-associated lymphoproliferative disease.J Hematother. 1995;4:73–79.

    CAS  PubMed  Google Scholar 

  64. Von Melchner H, Housman DE. The expression of neomycin phos-photransferase in human promyelocytic leukemia cells (HL60) delays their differentiation.Oncogene. 1987;2:137–140.

    Google Scholar 

  65. Misteli T, Spector DL. Applications of the green fluorescent protein in cell biology and biotechnology.Nat Biotechnol. 1998;15:961–964.

    Article  Google Scholar 

  66. Wivel NA, Wilson JM. Methods of gene delivery.Hematol Oncol Clin North Am. 1998;12:483–501.

    Article  CAS  PubMed  Google Scholar 

  67. Miller AD. Cell surface receptors for retroviruses and implications for gene transfer.Proc Natl Acad Sci USA. 1996;93:11407–11413.

    Article  CAS  PubMed  Google Scholar 

  68. Miller DG, Adam MA, Miller AD. Gene transfer by retrovirus vectors occurs only in cells that are actively replicating at the time of infection.Mol Cell Biol. 1990;10:4239–4242.

    CAS  PubMed  Google Scholar 

  69. Tisdale JF, Hanazono Y, Sellers SE, Agricola BA, Metzger ME, Donahue RE, et al. Ex vivo expansion of genetically marked rhesus peripheral blood progenitor cells results in diminished long-term repopulating ability.Blood. 1998;92:1131–1141.

    CAS  PubMed  Google Scholar 

  70. Amada RG, Chen IS. Lentiviral vectors: the promise of gene therapy within reach?Science. 1999;285:674–676.

    Article  Google Scholar 

  71. Sutton RE, Wu HT, Rigg R, Bohnleim E, Brown PO. Human immunodeficiency virus type 1 vectors efficiently transduce human hematopoietic stem cells.J Virol. 1990;72:5781–5788.

    Google Scholar 

  72. Mascarenhas L, Stripecke R, Casse SS, Xu D, Weinberg KI, Kohn DB. Gene delivery to human B-precursor acute lymphoblastic leukemia cells.Blood. 1998;92:3537–3545.

    CAS  PubMed  Google Scholar 

  73. Case SS, Price MA, Jordon CT, et al. Stable transduction of quiescent CD34+ CD38- human hematopoietic cells by HIV-1-based lentiviral vectors.Proc Natl Acad Sci USA. 1999;96:2988–2993.

    Article  CAS  PubMed  Google Scholar 

  74. Brenner M. Gene marking studies.Progress in Growth Factors. 1997;3:2–6.

    Google Scholar 

  75. Lutzko C, Dube ID, Stewart K. Recent progress in gene transfer into hematopoietic stem cells.Crit Rev Oncol Hematol. 1999;30:143–158.

    Article  CAS  PubMed  Google Scholar 

  76. Banchier CR, Giles RE, Ellerson D, et al. Hematopoietic retroviral gene marking in patients with follicular non-Hodgkin’s lymphoma.Leuk Lymphoma. 1999;32:279–288.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine M. Bollard.

About this article

Cite this article

Bollard, C.M., Heslop, H.E. & Brenner, M.K. Gene-Marking studies of hematopoietic cells. Int J Hematol 73, 14–22 (2001). https://doi.org/10.1007/BF02981898

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02981898

Key words

Navigation