Skip to main content
Log in

Self-assembled polymeric nanoparticles of poly(ethylene glycol) grafted pullulan acetate as a novel drug carrier

  • Reasearch Articles
  • Articles
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Self-assembling nanospheres of hydrophobized pullulan have been developed. Pullulan acetate (PA), as hydrophobized pullulan, was synthesized by acetylation. Carboxymethylated poly(ethylene-glycol) (CMPEG) was introduced into pullulan acetate (PA) through a coupling reaction using N,N′-dicyclohexyl carbodiimide (DCC). A synthesized PA-PEG-PA (abbreviated as PEP) conjugate was confirmed by Fourier transform-infrared (FT-IR) spectroscopy. Since PEP conjugates have amphiphilic characteristics in aqueous solution, polymeric nanoparticles of PEP conjugates were prepared using a simple dialysis method in water. From the analysis of fluorescence excitation spectra primarily, the critical association concentration (CAC) of this conjugate was found to be 0.0063 g/L. Observations by scanning electron microscopy (SEM) showed the spherical morphologies of the PEP nanoparticles. The particle size distribution of the PEP conjugates was determined using photon correlation spectroscopy (PCS) and the intensity-average particle size was 193.3 ± 13.53 nm with a unimodal distribution. Clonazepam (CNZ), as a model drug, was easy to entrap into polymeric nanoparticles of the PEP conjugates. The drug release behavior was mainly diffusion controlled from the core portion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akiyoshi, K., Deguchi, S., Moriguchi, N., Yamaguchi, S., and Sunamoto, J., Self-aggregates of hydrophobized polysaccharides in water. Formation and characteristics of nanoparticles.Macromolecules, 26, 3062–3068 (1993).

    Article  CAS  Google Scholar 

  • Choi, Y., Kim, S. Y., Kim, S. H., Lee, K. S., Kim, C., and Byun, Y., Long-term delivery of all-trans retinoic acid using biodegradable PLLA/PEG-PLLA blended microspheres.Int. J. Pharm., 215, 67–81 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Davis, S. S.,Emulsion systems for delivery of drugs by the parenteral route. in Optimization of Drug Delivery, Bundgaard, H., Hausen, A. B., Kofod, H. (eds.), Munksgaard, Copenhagen, pp. 198–208 (1984).

    Google Scholar 

  • Dunn, S. E., Coombes, A. G. A., Garnett, M. C., Davis, S. S., Davies, M. C., and Illum, L.,In vitro cell interaction andin vivo biodistribution of poly(lactide-co-glycolide) nanospheres surface modified by poloxamer and poloxamine copolymers.J. Control Rel., 44, 65–76 (1997).

    Article  CAS  Google Scholar 

  • Dumitriu, S. and Dumitriu, M., Polymeric drug carriers, in Polymeric Biomaterials, S. Dumitriu (ed.), Marcel Dekker, New York, pp. 435–724, (1994).

    Google Scholar 

  • Estey, E., Thall, P. F., Mehta, K., Rosenblum, M., Brewer T., Simmons, V., Cabanillas, F., Kurzrock, R., and Lopez-Berestein, G., Alterations in tretinoin pharmacokinetics following administration of liposomal all-trans retinoic acid.Blood, 87, 3650–3654 (1996).

    PubMed  CAS  Google Scholar 

  • Gref, R., Minamitake, Y., Peracchia, M. T., Trubetskoy, V., Torchilin, V., and Langer, R., Biodegradable long-circulating polymeric nanospheres.Science, 263, 1600–1603 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Hollinger, J. O. (ed.),Biomedical Applications of Synthetic biodegradable Polymers, CRC Press, Boca Raton, (1995).

    Google Scholar 

  • Jeanes, A., Dextrans and pullulans: industrially significant.ACS Symp. Ser, 45, 284–298 (1997).

    Article  Google Scholar 

  • Jeong, Y I., Cheon, J. B., Kim, S. H., Nah, J. W., Lee, Y. M., and Sung, Y. K., Akaite, T., and Cho, C. S., Clonazepam release from core-shell type nanoparticlesin vitro.J. Control Rel., 51, 169–178 (1998).

    Article  CAS  Google Scholar 

  • Jung, S. W., Jeong, Y I., and Kim, S. H., Characterization of hydrophobized pullulan with various hydrophobicities.Int. J. Pharm., 254, 109–121 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Kalyanasundaram, K. and Thomas, J. K., Environmental effects on vibronic band intensities in pyrene monomer fluorescence and their application in studies in micellar systems.J. Am. Chem. Soc., 99, 2039–2044 (1997).

    Article  Google Scholar 

  • Kaneo, Y., Fujihara, Y., Tanaka, T., Ogawa, K., Fujita, K., and Iguchi, S., Preparation and characterization of a soluble glutathione-dextran conjugate.J. Pharm., 57, 263–272 (1989a).

    CAS  Google Scholar 

  • Kaneo, Y., Fujihara, Y., Tanaka, T., Kozawa, Y., Mori, H., and Iguchi, S., Intrahepatic delivery of glutathione by conjugation to dextran.Pharm. Res., 6(12), 1025–1031 (1989b).

    Article  PubMed  CAS  Google Scholar 

  • Kreuter, J., Nanoparticle-based drug delivery system.J. Control. Re/., 16, 169–176 (1991).

    Article  CAS  Google Scholar 

  • Kwon, G., Naito, M., Yokoyama, M., Okano, T., Sakurai, Y., and Kataoka, K., Micelles based on AB block copolymers of poly(ethylene oxide) and poly(-benzyl L-asparate).Langmuir, 9, 945–949 (1993).

    Article  CAS  Google Scholar 

  • Kwon, G. S., Naito, M., Yokoyama, M., Okano, T., Sakurai, Y., and Kataoka, K., Physical entrapment of adriamycin in AB block copolymer micelles.Pharm Res., 12, 192–195 (1995).

    Article  PubMed  CAS  Google Scholar 

  • La, S. B., Okano, T., and Kataoka, K., Preparation and characterization of the micelle-forming polymeric drug indomethacin-incorporated poly(ethylene oxide)-poly(β-benzyl L-aspartate) block copolymer micelles.J. Pharm. Sci., 85, 85–90 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Langer, R., Polymers in controlled release systems,IBC Paper 1, 1–24 (1989).

    Google Scholar 

  • Langer, R. and Folkman, J., Polymers for the sustained release of proteins and other macromolecules.Nature, 263, 797–800 (1976).

    Article  PubMed  CAS  Google Scholar 

  • Lee, J. H., Kopecek, J., and Andrade, J. D., Protein-resistant surfaces prepared by PEO-containing block copolymer surfactants.J. Biomed. Mater. Res., 23, 351–368 (1989).

    Article  PubMed  Google Scholar 

  • Lehn, J. M., Supramolecular chemistry.Science, 260, 1762–1763 (1993).

    Article  PubMed  CAS  Google Scholar 

  • Lewis, D. H., Controlled release of bioactive agents from lactide/ glycolide polymers.Drugs Pharm. Sci., 45, 1–42 (1990).

    CAS  Google Scholar 

  • Majeti N. V. and Ravi Kumar, Nano and microparticles as Controlled Drug Delivery Devices.J. Pharm. Pharmaceut. Sci., 3(2), 234–258 (2000).

    CAS  Google Scholar 

  • Molteni, L., Dextrans as drug carriers, in: Gregoriadis, G. (ed.),Drug Carriers in Biology and Medicine, Academic Press, London, pp. 107–125 (1979).

    Google Scholar 

  • Motozato, Y., Ihara, H., Tomoda, T., and Hirayama, C., Preparation and gel permeation chromatographic properties of pululan spheres.J. Chromatogr., 355, 434–437 (1986).

    Article  CAS  Google Scholar 

  • Nishikawa, T., Akiyoshi, K., and Sunamoto, J., Supramolecular assembly between nanoparticles of hydrophobized polysaccharide and soluble protein complexation between the self-aggregate of cholesterol-bearing pullulan and α-chymotrypsin.Macromolecules, 27, 7654–7659 (1994).

    Article  CAS  Google Scholar 

  • Poznansky, M. J. and Cleland, L. G., Biological macromolecules as carriers of drugs and enzymes, in: Juliano, R. L. (ed.).Drug Delivery Systems, Oxford University Press, New York, (1980).

    Google Scholar 

  • Robinson, J. R. and Lee V. H. L., (eds.).Controlled Drug Delivery: Fundamental and Applications, Marcel Dekker, New York, (1987).

    Google Scholar 

  • Royer, G. P. and Anantharmaiah G. M., Peptide synthesis in water and the use of immobilized carboxypeptidase Y for deprotection,J. Am. Chem. Soc., 101, 3394–3396 (1979).

    Article  CAS  Google Scholar 

  • Schacht, E., Ruys, L., Vermeersch, J., Remon, J. P., Duncan, R., 1985. Use of polysaccharides as drug carriers: dextran and inulin derivatives of procainamide, in: Tirrell, D. A., Donaruma, G., Turek, A. B. (eds.),Macromolecules as Drugs and as Carriers for Biologically Active Materials, The New York Academy of Science, New York, pp. 199–212 (1985).

    Google Scholar 

  • Stevenson, W. T. K. and Sefton, M. F., Graft copolymer emulsions of sodium alginate with hydroxyalkyl methacrylates for microencapsulation.Biomaterials, 8, 449–457 (1987).

    Article  PubMed  CAS  Google Scholar 

  • Wilhelm, M., Zaho, C. L., Wang, Y., Xu, R., Winnik, M. A., Mura, J. L., Riess, G., and Croucher, M. D., Poly(styrene-ethylene oxide) block copolymer micelle formation in water: a fluorescence probe study.Macromolecules, 24, 1033–1040 (1991).

    Article  CAS  Google Scholar 

  • Yokoyama, M., Miyauchi, M., Yamada, N., Okano, T., Sakurai, Y., and Kataoka, K., Characterization and anticancer activity of the micelle-forming polymeric anticancer drug adriamycinconjugated poly(ethylene glycol)-poly(aspartic acid) block copolymer.Cancer Res., 50, 1693–1700 (1990).

    PubMed  CAS  Google Scholar 

  • Yuen, S., Pullulan and its applications.Process Biochem., 9(9), 7–9 (1974).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung-Ho Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jung, SW., Jeong, Yl., Kim, YH. et al. Self-assembled polymeric nanoparticles of poly(ethylene glycol) grafted pullulan acetate as a novel drug carrier. Arch Pharm Res 27, 562–569 (2004). https://doi.org/10.1007/BF02980132

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02980132

Key words

Navigation