Skip to main content
Log in

Homology modeling and molecular docking study of translationally controlled tumor protein and artemisinin

  • Articles
  • Drug Design
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Translationally controlled tumor protein (TCTP), also known as histamine releasing factor (HRF), is found abundantly in different eukaryotic cell types. The sequence homology of TCTP between different species is very high, belonging to the MSS4/DSS4 superfamily of proteins. TCTP is involved in both cell growth and human late allergy reaction, as well as having a calcium binding property; however, its primary biological functions remain to be clearly elucidated. In regard to many possible functions, the TCTP ofPlasmodium falciparum (Pf) is known to bind with an antimalarial agent, artemisinin, which is activated by heme. It is assumed that the endoperoxide-bridge of artemisinin is opened up by heme to form a free radical, which then eventually alkylates, probably to the Cys14 ofPfTCTP. Study of the docking of artemisinin with heme, and subsequently withPfTCTP, was carried out to verify the above hypothesis on the basis of structural interactions. The three dimensional (3D) structure ofPfTCTP was built by homology modeling, using the NMR structure of the TCTP ofSchizosaccharomyces pombe as a template. The quality of the model was examined based on its secondary structure and biological function, as well as with the use of structure evaluating programs. The interactions between artemisinin, heme andPfTCTP were then studied using the docking program, FlexiDock. The center of the peroxide bond of artemisinin and the Fe of heme were docked within a short distance of 2.6Å, implying the strong possibility of an interaction between the two molecules, as proposed. When the activated form of artemisinin was docked on thePfTCTP, the C4-radical of the drug faced towards the sulfur of Cys14 within a distance of 2.48Å, again suggesting the possibility of alkylation having occurred. These results confirm the proposed mechanism of the antimalarial effect of artemisinin, which will provide a reliable method for establishing the mechanism of its biological activity using a molecular modeling study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D. J., Gapped BLAST and PSIBLAST: a new generation of protein database search programs.Nucleic Acids Res., 25, 3389–3402 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Bhisutthibhan, J., Pan, X. Q., Hossler, P. A., Walker, D. J., Yowell, C. A., Carlton, J., Dame, J. B., and Meshnick, S. R., The Plasmodium falciparum translationally controlled tumor protein homolog and its reaction with the antimalarial drug artemisinin.J. Biol. Chem., 273, 16192–16198 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Bhisutthibhan, J. and Meshnick, S. R., Immunoprecipitation of [3H]dihydroartemisinin translationally controlled tumor protein (TCTP) adducts from Plasmodium falciparum-infected erythrocytes by using anti-TCTP antibodies.Antimicrob. Agents. Chemother., 45, 2397–2399 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Bommer, U. A. and Thiele, B. J., The translationally controlled tumour protein (TCTP).Int. J. Biochem. Cell Biol., 36, 379–385 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Cheng, F., Shen, J., Luo, X., Zhu, W., Gu, J., Ji, R., Jiang, H., and Chen, K., Molecular docking and 3-D-QSAR studies on the possible antimalarial mechanism of artemisinin analogues.Bioorg. Med. Chem., 10, 2883–2891 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Devlin, K., Baker, S., Davies, P., Mungal, K., Berriman, M., Pain, A., Hall, N., Bowman, S., Churcher, C., Quail, M., and Barrell, B., P. falciparum Genome Sequencing Consortium. The Welcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK., (2002).

  • El Sayed, K. A., Kelly, M., Kara, U. A., Ang, K. K., Katsuyama, I., Dunbar, D. C., Khan, A. A., and Hamann, M. T., New manzamine alkaloids with potent activity against infectious diseases.J. Am. Chem. Soc., 123, 1804–1808 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Falquet, L., Pagni, M., Bucher, P., Hulo, N., Sigrist, C. J., Hofmann, K., and Bairoch, A., The PROSITE database, its status in 2002.Nucleic Acids Res., 30, 235–238 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Gerczei, T., Keseru, G. M., and Naray-Szabo, G., Construction of a 3D model of oligopeptidase B, a potential processing enzyme in prokaryotes.J. Mol. Graphics. Model., 18, 7–17 (2000).

    Article  CAS  Google Scholar 

  • Gnanasekar, M., Rao, K. V., Chen, L., Narayanan, R. B., Geetha, M., Scott, A. L., Ramaswamy, K., and Kaliraj, P., Molecular characterization of a calcium binding translationally controlled tumor protein homologue from the filarial parasites Brugia malayi and Wuchereria bancrofti.Mol. Biochem. Parasitol., 121, 107–118 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Kelley, L. A., MacCallum, R. M., and Sternberg, M. J. E., Enhanced genome annotation using structural profiles in the program 3D-PSSM.J. Mol. Biol., 299, 499–520 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Kim, S. H., Cairns, N., Fountoulakisc, M., and Lubec, G., Decreased brain histamine-releasing factor protein in patients with Down syndrome and Alzheimer's disease.Neurosci. Lett., 300, 41–44 (2001).

    Article  PubMed  CAS  Google Scholar 

  • King, R. D. and Sternberg, J. E., Identification and application of the concepts important for accurate and reliable protein secondary structure prediction.Protein Sci., 5, 2298–2310 (1996).

    PubMed  CAS  Google Scholar 

  • Laskowski, R. A., McAurthur, M. W., Moss, D. S., and Thomton, J. M., PROCHECK: a program to check the stereochemical quality of protein structures.J. Appl. Cryst., 26, 283–291 (1993).

    Article  CAS  Google Scholar 

  • MacDonald, S. M., Rafnar, T., Langdon, J., and Lichtenstein, L. M., Molecular identification of an IgE-dependent histaminereleasing factor.Science, 269, 688–690 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Olliaro, P. L., Haynes, R. K., Meunier, B., and Yuthavong, Y., Possible modes of action of the artemisinin-type compounds.Trends Parasitol., 17, 122–126 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Paitayatat, S. B., Thebtaranonth, T. Y., and Yuthavong, Y., Correlation of antimalarial activity of artemisinin derivatives with binding affinity with ferroprotoporphyrin IX.J. Med. Chem., 40, 633–638 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Pandey, A. V., Tekwani, B. L., Singh, R. L., and Chauhan, V. S., Artemisinin, an endoperoxide antimalarial, disrupts the hemoglobin catabolism and heme detoxification systems in malarial parasite.J. Biol. Chem., 274, 19383–19388 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Rost, B., PHD: predicting one-dimensional protein structure by profile-based neural networks.Methods Enzymol., 266, 525–539 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Sali, A. and Blundell, T. L., Comparative protein modelling by satisfaction of spatial restraints.J. Mol. Biol., 234, 779–815 (1993).

    Article  PubMed  CAS  Google Scholar 

  • Shukla, K. L., Gund, T. M., and Meshnick, S. R., Molecular modeling studies of the artemisinin (qinghaosu)-hemin interaction: docking between the antimalarial agent and its putative receptor.J. Mol. Graph., 13, 215–222 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Sippl, M. J., Recognition of errors in three-dimensional structures of proteins.Proteins, 17, 355–362 (1993).

    Article  PubMed  CAS  Google Scholar 

  • Stewart, J. J. P., MOPAC2002 Release 1.5; Fujitsu Limited: Tokyo, Japan, 2002.

    Google Scholar 

  • Sturzenbaum, S. R., Kille, P., and Morgan, A., Identification of heavy metal induced changes in the expression patterns of the translationally controlled tumour protein (TCTP) in the earthworm Lumbricus rubellus1.J. Biochim. Biophys. Acta, 1398, 294–304 (1998).

    CAS  Google Scholar 

  • Thaw, P., Baxter, N. J., Hounslow, A. M., Price, C., Waltho, J. P., and Craven, C. J., Structure of TCTP reveals unexpected relationship with guanine nucleotide-free chaperones.Nat. Struct. Biol., 8, 701–704 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Wolf, E., Kim, P. S., and Berger, B., MultiCoil: a program for predicting two- and three-stranded coiled coils.Protein Sci., 6, 1179–1189 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Wu, Y., Yue, Z. Y., and Wu, Y. L., Interaction of qinghaosu (Artemisinin) with cysteine sulfhydryl mediated by traces of non-heme iron.Angew. Chem. Int. Ed. Engl., 38, 2580–2582 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Yang, Y. Z., Little, B., and Meshnick, S. R., Alkylation of proteins by artemisinin. Effects of heme, pH, and drug structure.Biochem. Pharmacol., 48, 569–573 (1994).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Choonmi Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chae, J., Choi, I. & Kim, C. Homology modeling and molecular docking study of translationally controlled tumor protein and artemisinin. Arch Pharm Res 29, 50–58 (2006). https://doi.org/10.1007/BF02977468

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02977468

Key words

Navigation