Skip to main content
Log in

Differential functions of ras for malignant phenotypic conversion

  • Review
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Among the effector molecules connected with the group of cell surface receptors, Ras proteins have essential roles in transducing extracellular signals to diverse intracellular events, by controlling the activities of multiple signaling pathways. For over 20 years since the discovery of Ras proteins, an enormous amount of knowledge has been accumulated as to how the proteins function in overlapping or distinct fashions. The signaling networks they regulate are very complex due to their multiple functions and cross-talks. Much attention has been paid to the pathological role of Ras in tumorigenesis. In particular, human tumors very frequently express Ras proteins constitutively activated by point mutations. Up to date, three members of the Ras family have been identified, namely H-Ras, K-Ras (A and B), and N-Ras. Although these Ras isoforms function in similar ways, many evidences also support the distinct molecular function of each Ras protein. This review summarizes differential functions of Ras and highlights the current view of the distinct signaling network regulated by each Ras for its contribution to the malignant phenotypic conversion of breast epithelial cells. Four issues are addressed in this review: (1) Ras proteins, (2) membrane localization of Ras, (3) effector molecules downstream of Ras, (4) Ras signaling in invasion. In spite of the accumulation of information on the differential functions of Ras, much more remains to be elucidated to understand the Ras-mediated molecular events of malignant phenotypic conversion of cells in a greater detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alessi, D. R., Saito, Y., Campbell, D. G., Cohen, P., Sithanandam, G., Rapp, U., Ashworth, A., Marshall, C. J., and Cowley, S., Identification of the sites in MAP kinase kinase-1 phosphorylated by p74raf-1.EMBO J., 13, 1610–1619 (1994).

    PubMed  CAS  Google Scholar 

  • Bachmeier, B. E., Albini, A., Vene, R., Benelli, R., Noonan, D., Weigert, C., Weiler, C., Lichtinghagen, R., Jochum, M., and Nerlich, A. G., Cell density-dependent regulation of matrix metalloproteinase and TIMP expression in differently tumorigenic breast cancer cell lines.Exp. Cell Res., 305, 83–98 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Barbacid, M., Ras genes.Annu. Rev. Biochem., 56, 779–827 (1987).

    Article  PubMed  CAS  Google Scholar 

  • Bergman, M. R., Cheng, S., Honbo, N., Piacentini, L., Karliner, J. S., and Lovett, D. H., A functional activating protein 1 (AP-1) site regulates matrix metalloproteinase 2 (MMP-2) transcription by cardiac cells through interactions with JunB-Fra1 and JunB-FosB heterodimers.Biochem. J., 369, 485–496 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Bernhard, E. J., Gruber, S. B., and Muschel, R. J., Direct evidence linking expression of matrix metalloproteinase 9 (92 kDa gelatinase/collagenase) to the metastatic phenotype in transformed rat embryo cells.Proc. Natl. Acad. Sci. U.S.A., 91, 4293–4297 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Bernhard, E. J., Muschel, R. J., Hughes, E. N., and M. R., 92,000 gelatinase release correlates with the metastatic phenotype in transformed rat embryo cells.Cancer Res., 50, 3872–3877 (1990).

    PubMed  CAS  Google Scholar 

  • Bian, D., Su, S., Mahanivong, C., Cheng, R. K., Han, Q., Pan, Z. K., Sun, P., and Huang, S., Lysophosphatidic Acid stimulates ovarian cancer cell migrationvia a Ras-MEK kinase 1 pathway.Cancer Res., 64, 4209–4217 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Bian, J., and Sun, Y., Transcriptional activation by p53 of the human type IV collagenase (gelatinase A or matrix metalloproteinase 2) promoter.Mol. Cell Biol., 17, 6330–6338 (1997).

    PubMed  CAS  Google Scholar 

  • Bivona, T. G., Perez De Castro, I., Ahearn, I. M., Grana, T. M., Chiu, V. K., Lockyer, P. J., Cullen, P. J., Pellicer, A., Cox, A. D., and Philips, M. R., Phospholipase Cgamma activates Ras on the Golgi apparatus by means of Ras-GRP1.Nature, 7, 694–698 (2003).

    Article  CAS  Google Scholar 

  • Bodey, B., Bodey, B. Jr., Groger, A. M., Siegel, S. E., and Kaiser, H. E., Invasion and metastasis: the expression and significance of matrix metalloproteinases in carcinomas of the lung.In Vivo, 15, 175–180 (2001).

    PubMed  CAS  Google Scholar 

  • Boguski, M. S. and McCormick, F., Proteins regulating Ras and its relatives.Nature, 663, 643–654 (1993).

    Article  Google Scholar 

  • Booden, M. A., Sakaguchi, D. S., and Buss, J. E., Mutation of Ha-Ras C terminus changes effector pathway utilization.J. Biol. Chem. 275, 23559–23568 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Bos, J. L., Ras oncogenes in human cancer: a review.Cancer Res., 49, 4682–4689 (1989).

    PubMed  CAS  Google Scholar 

  • Brown, P. D., Levy, A. T., Margulies, I. M., and Liotta, L. A., and Stetler-Stevenson, W. G., Independent expression and cellular processing of Mr 72,000 type IV collagenase and interstitial collagenase in human tumorigenic cell lines.Cancer Res., 50, 6184–6191 (1990).

    PubMed  CAS  Google Scholar 

  • Campbell, S. L., Khosravi-Far, R., Rossman, K. L., Clark, G. J., and Der, C. J., Increasing complexity of Ras signaling.Oncogene, 17, 1395–1413 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Carbone, A., Gusella, G. L., Radzioch, D., and Varesio, L., Human Harvey-ras is biochemically different from Kirsten- or N-ras.Oncogene, 6, 731–737 (1991).

    PubMed  CAS  Google Scholar 

  • Casey, P. J., Solski, P. A., Der, C. J., and Buss, J. E., p21ras is modified by a farnesyl isoprenoid.Proc. Natl. Acad. Sci. U.S.A., 86, 8323–8327 (1989).

    Article  PubMed  CAS  Google Scholar 

  • Chiu, V. K., Bivona, T., Hach, A., Sajous, J. B., Silletti, J., Wiener, H., Johnson, R. L. II, Cox, A. D., and Philips, M. R., Ras signalling on the endoplasmic reticulum and the Golgi.Nat. Cell Biol., 4 343–350 (2002).

    PubMed  CAS  Google Scholar 

  • Choy, E., V. K., Chiu, J., Silletti, M., Feoktistov, T., Morimoto, D., Michaelson, I. E., Ivanov, and M. R. Philips., Endomembrane trafficking of Ras: the CAAX motif targets proteins to the ER and Golgi.Cell 98, 69–80 (1999)

    Article  PubMed  CAS  Google Scholar 

  • Chung, T. W., Lee, Y. C., and Kim, C. H., Hepatitis B viral HBx induces matrix metalloproteinase-9 gene expression through activation of ERK and PI-3K/AKT pathways: involvement of invasive potential.FASEB J., 18, 1123–1125 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Clair, T., Miller, W., and Cho-Chung, Y., Prognostic significance of the expression of the ras protein with a molecular weight of 21,000 by human breast cancer.Cancer Res., 49, 5290–5293 (1987).

    Google Scholar 

  • Clark, G. J. and Der, C. J., Aberrant function of the Ras signal transduction pathway in human breast cancer.Breast Cancer Res. Treat., 35, 133–144 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Cox, A. D. and Der, C. J., Fanesyltransferase inhibitors and cancer treatment: targeting simply Ras?Biochem. Biophys. Acta, 1333, F51-F71 (1997).

    PubMed  CAS  Google Scholar 

  • Datta, S. R., Brunet, A., and Greenberg, M. E., Cellular survival: aplay in three Akts.Genes Dev., 13, 2905–2927 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Downward, J., Mechainsms and consequences of activation of protein kinase B/Akt.Curr. Opin. Cell Biol., 10, 262–267 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Downward, J., Targeting ras signaling pathways in cancer therapy.Nature, 3, 11–22 (2003).

    CAS  Google Scholar 

  • Etienne-Manneville, S. and Hall, A., Rho GTPases in cell biology.Nature, 420, 629–635 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Feig, L. A., Urano, T., and Canto, S., Evidence for a Ras/Ral signaling cascade.Trends Biochem. Sci., 21, 438–441 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Franks, L. M. and Teich, N. M., Cellular and Molecular Biology of Cancer. Oxford University Press, (1997).

  • Gum, R., Wang, H., Lengyel, E., Juarez, J., and Boyd, D., Regulation of 92 kDa type IV collagenase expression by the jun aminoterminal kinase- and the extracellular signal-regulated kinase-dependent signaling cascades.Oncogene, 14, 1481–1493 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Gutierrez, L., Magee, A. I., Marshall, C. J., and Hancock, J. F., Post-translational processing of p21ras is two-step and involves carboxyl-methylation and carboxy-terminal proteolysis.EMBO J., 8, 1093–1098 (1989).

    PubMed  CAS  Google Scholar 

  • Hancock, J. F., Magee, A. I., Childs, J. E., and Marshall, C. J., All Ras proteins are polyisoprenylated but only some are palmitoylated.Cell, 57, 1167–1177 (1989).

    Article  PubMed  CAS  Google Scholar 

  • Hancock, J. F., Peterson, H., and Marshall, C. J., A polybasic domain or palmitoylation is required in addition to the CAAX motif to localize p21ras to the plasma membrane.Cell, 63, 133–139 (1990).

    Article  PubMed  CAS  Google Scholar 

  • Hancock, J. F., Ras proteins: different signals from different locations.Nat. Rev. Mol. Cell Biol., 4, 373–384 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Jiang, K., Sun, J., Cheng, J., Djeu, J. Y., Wei, S., and Sebti, S., Akt mediates Ras downregulation of RhoB, a suppressor of transformation, invasion, and metastasis.Mol. Cell Biol., 24, 5565–5576 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Johnson, L., Greenbaum, D., Cichowski, K., Mercer, K., Murphy, E., Schmitt, E., Bronson, R. T., Umanoff, H., Edelmann, W., Kucherlapati, R., and Jacks, T., K-ras is an essential gene in the mouse with partial functional overlap with N-ras.Genes Dev., 11, 2468–2481 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Joneson, T., White, M., Wigler, M., and Bar-Sagi, D., Stimulation of membrane ruffling and MAP kinase activation by distinct effectors of Ras.Science, 271, 810–812 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Kato, K., Cox, A. D., Hisaka, M. M., Graham, S. M., Buss, J. E., and Der, C. J., Isoprenoid addition to Ras protein is the critical modification for its membrane association and transforming activity.Proc. Natl. Acad. Sci. U.S.A., 89, 6403–6407 (1992).

    Article  PubMed  CAS  Google Scholar 

  • Keely, P. J., Westwick, J. K., Whitehead, I. P., Der, C. J., and Parise, L. V., Cdc42 and Rac1 induce integrin-mediated cell motility and invasiveness through PI(3)K.Nature, 390, 632–636 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Khwaja, A., Akt is more than just a Bad kinase.Nature, 401, 33–34 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Khwaja, A., Rodriguez-Viciana, P., Wennstrom, S., Warne, P. H. and Downward, J., Matrix adhesion and Ras transformation both activate a phosphoinositide 3-OH kinase and protein kinase B/Akt cellular survival pathway.EMBO J., 16, 2783–2793 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Kim, M. S., Lee, E. J., Choi kim, H. R., and Moon, A., p38 kinase is a key signaling molecule for H-ras-induced cell motility and invasive phenotype in human breast epithelial cell.Cancer Res., 63, 5454–5461 (2003).

    PubMed  CAS  Google Scholar 

  • Koera, K., Nakamura, K., Nakao, K., Miyoshi, J., Toyoshima, K., Hatta, T., Otani, H., Aiba, A., and Katsuki, M., K-ras is essential for the development of the mouse embryo.Oncogene, 15, 1151–1159 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Kyriakis, J. M., App, H., Zhang, X.F., Banerjee, P., Brautigan, D.L., Rapp, U. R., and Avruch, J., Raf-1 activates MAP kinase-kinase.Nature, 358, 417–421 (1992).

    Article  PubMed  CAS  Google Scholar 

  • Lambert, J. M., Lambert, Q. T., Reuther, G. W., Malliri, A., Siderovski, D. P., Sondek, J., Collard, J. D., and Der, C. J., Tiam1 mediates Ras activation of Rac by a PI(3)K-independent mechnism.Nature, 417, 625–821 (2002).

    Article  CAS  Google Scholar 

  • Leevers, S. J., Paterson, H. F., and Marshall, C. J., Requirement for Ras in Raf activation is overcome by targeting Raf to the plasma membrane.Nature, 369, 411–414 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Li, J. J., Cao, Y., Young, M. R., and Colburn, N. H., Induced expression of dominant-negative c-jun downregulates NFkappaB and AP-1 target genes and suppresses tumor phenotype in human keratinocytes.Mol. Carcinog., 29, 159–169 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Li, J. J., Rhim, J. S., Schlegel, R., Vousden, K. H., and Colburn, N. H., Expression of dominant negative Jun inhibits elevated AP-1 and NF-kappaB transactivation and suppresses anchorage independent growth of HPV immortalized human keratinocytes.Oncogene, 16, 2711–2721 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Li, J. J., Westergaard, C., Ghosh, P., and Colburn, N. H., Inhibitors of both nuclear factor-kappaB and activator protein-1 activation block the neoplastic transformation response.Cancer Res., 57, 3569–3576 (1997).

    PubMed  CAS  Google Scholar 

  • Liotta, L. A., Steeg, P. S., and Stetler-Stevenson, W. G., Cancer metastasis and angiogenesis: An imbalance of positive and negative regulation.Cell, 64, 327–336 (1991).

    Article  PubMed  CAS  Google Scholar 

  • Ludes-Meyers, J. H., Liu, Y., Munoz-Medellin, D., Hilsenbeck, S. G., and Brown, P. H., AP-1 blockade inhibits the growth of normal and malignant breast cells.Oncogene, 20, 2771–2780 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Magee, T., and Marshall, C., New insights into the interaction of Ras with the plasma membrane.Cell, 98, 9–12 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Maher, J., Baker, D. A., Manning, M., Dibb, N. J., and Roberts, I. A. G., Evidence for cell-specific differences in transformation by N-, H- and K-ras.Oncogene, 11, 1639–1647 (1995).

    PubMed  CAS  Google Scholar 

  • Malliri, A., Van der Kammen, R. A., Clark, K., Van der Valk, M., Michiels, F., and Collar, J. G., Mice deficient in the Rac activator Tiam1 are resistant to Ras-induced skin tumors.Nature, 417, 867–871 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Marais, R., Light, Y., Paterson, H. F., and Marshall, C. J., Ras recruits Raf-1 to the plasma membrane for activation by tyrosine phosphorylation.EMBO J., 14, 3136–3145 (1995).

    PubMed  CAS  Google Scholar 

  • Marshall, C. J., Ras effectors.Curr. Opin. Cell Biol., 8, 197–204 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Matallanas, D., Arozarena, I., Berciano, M. T., Aaronson, D. S., Pellicer, A., Lafarga, M., and Crespo, P., Differences on the inhibitory specificities of H-Ras, K-Ras, and N-Ras (N17) dominant negative mutants are related to their membrane microlocalization.J. Biol. Chem., 278, 4572–4581 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Moon, A., Kim, M. S., Kim, T. G., Kim, H. E., Chen, Y. Q., and Choi Kim, H. R., H-ras, but not N-ras, induces an invasive phenotype in human breast epithelial cells: a role for MMP-2 in the H-ras-induced invasive phenotype.Int. J. Cancer, 85, 176–181 (2000).

    PubMed  CAS  Google Scholar 

  • Moon, S. K., Cha, B. Y., and Kim, C. H., ERK1/2 mediates TNF-alpha-induced matrix metalloproteinase-9 expression in human vascular smooth muscle cellsvia the regulation of NF-kappaB and AP-1: Involvement of the ras dependent pathway.J. Cell Physiol., 198, 417–427 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Nakopoulou, L., Tsirmpa, I., Alexandrou, P., Louvrou, A., Ampela, C., Markaki, S., and Davaris, P. S., MMP-2 protein in invasive breast cancer and the impact of MMP-2/TIMP-2 phenotype on overall survival.Breast Cancer Res. Treat., 77, 145–155 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Niv, H., Gutman, O., Kloog, Y., and Henis, Y. I., Activated K-Ras and H-Ras display different interactions with saturable nonraft sites at the surface of live cells.J. Cell Biol., 157, 865–872 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Nobes, C. D. and Hall, A., Rho, Rac, and Cdc42 GTPases regulate the assembly of multimolecular focal complexs associated with actin stress fibers, lamlipodia, and filopodia.Cell, 81, 53–62 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Oldham, S. M., Clark, G. J., Gangarosa, L. M., Coffey, R. J., and Der, C. J., Activation of the Raf-1/MAP kinase cascade is not sufficient for Ras transformation of RIE-1 epithelial cells.Proc. Natl. Acad. Sci. U.S.A., 93, 6924–6928 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Oliff, A., Rarnesyltransferse inhibitors: targeting the molecular basis of cancer.Biochim. Biophys. Acta, 1423, C19-C30 (1999).

    PubMed  CAS  Google Scholar 

  • Pacold, M. E., Suire, S., Perisic, O., Lara-Gonzlez, W., Davis, C. T., Walker, E. H., Hawkins, P. T., Stephens, L., Eccleston, J. R., and Williams, R. L., Crystal strucure and functional analysis of Ras binding to its effector phosphoinositide 3-kinaseã.Cell, 103, 931–943 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Parton, R. G. and Hancock, J. F., Lipid rafts and plasma membrane microorganization: insights from Ras.Trends Cell Biol., 14, 141–147 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Pola, S., Cattaneo, M. G., and Vicentini, L. M., Anti-migratory and anti-invasive effect of somatostatin in human neuroblastoma cells: involvement of Rac and MAP kinase activity.J. Biol. Chem., 278, 40601–40606 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Prior, I. A., Harding, A., Yan, J., Sluimer, J., Parton, R. G. and Hancock, J. F., GTP-dependent segregation of H-ras from lipid rafts is required for biological activity.Nat. Cell Biol., 3, 368–375 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Prior, I. A. and Hancock, J. F., Compartmentalization of ras proteins.J. Cell Sci., 114, 1603–1608 (2001).

    PubMed  CAS  Google Scholar 

  • Prior, I. A., Muncke, C., Parton, R. G., and Hancock, J. F., Direct visualization of Ras proteins in spatially distinct cell surface microdomains.J. Cell Biol., 160, 165–170 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Pruitt, K. and Der, C. J., Ras and Rho regulation of the cell cycle and oncogenesis.Cancer Lett., 171, 1–10 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Qin, H., Sun, Y., and Benveniste, E. N., The transcription factors Sp1, Sp3, and AP-2 are required for constitutive matrix metalloproteinase-2 gene expression in astroglioma cells.J. Biol. Chem., 274, 29130–29137 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Qui, R., McCormick, F., and Symons, M., An essential role for Rac in Ras transformation.Nature, 374, 457–459 (1995).

    Article  Google Scholar 

  • Reif, K., Nobes, C. D., Thomas, G., Hall, A., and Cantrell, D. A., Phosphatidylinositol 3-kinase signals activate a selective subset of Rac/Rho-dependent effector pathways.Curr. Biol. 6, 1445–1455 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Ridley, A. J., Paterson, H. F., Johnston, C. L., Diekmann, D., and Hall, A., The small GTP-binding protein rac regulates growth factor-induced membrane ruffling.Cell, 70, 401–410 (1992).

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Viciana, P., Warne, P. H., Dhand, R., Vanhaesebroeck, B., Gout, I., Fry, M. J., Waterfield, M. D., and Downward, J., Phosphatidylinositol-3-OH kinase as a direct target of Ras.Nature, 370, 527–532 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Romashkova, J. A. and Makarov, S. S., NF-kappaB is target of AKT in anti-apoptotic PDGF signaling.Nature, 401, 86–90 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Roy, S., Luetterforst, R., Harding, A., Apolloni, A., Etheridge, M., Stang, E., Rolls, B., Hancock, J. F., and Parton, R. G., Dominant-negative caveolin inhibits H-Ras function by disrupting cholesterol-rich plasma membrane domains.Nat. Cell Biol., 1, 98–105 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Sachdev, P., Zeng, L., and Wang, L. H., Distinct role of phosphatidylinositol 3-kinase and Rho family GTPases in Vav3-induced cell transformation, cell motility, and morphological changes.J. Biol. Chem., 277, 17638–17648 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Sato, H., Kida, Y., Mai, M., Endo, Y., Sasaki, T., Tanaka, J., and Seiki, M., Mutation spectra of smoky coal combustion emissions in Salmonella reflect the TP53 and KRAS mutations in lung tumors from smoky coal-exposed individuals.Oncogene, 7, 77–83 (1992).

    PubMed  CAS  Google Scholar 

  • Sato, H., Kita, M., and Seiki, M., v-Src activates the expression of 92-kDa type IV collagenase gene through the AP-1 site and the GT box homologous to retinoblastoma control elements. A mechanism regulating gene expression independent of that by inflammatory cytokines.J. Biol. Chem., 268, 23460–23468 (1993).

    PubMed  CAS  Google Scholar 

  • Sato, H. and Seiki, M., Regulatory mechanism of 92 kDa type IV collagenase gene expression which is associated with invasiveness of tumor cells.Oncogene, 8, 395–405 (1993).

    PubMed  CAS  Google Scholar 

  • Seabra, M. C., Membrane association and targeting or prenylated Ras-like GTPases.Cell signal., 10, 167–172 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Shields, J. M., Pruitt, K., McFall, A., Shaub, A., and Der, C. J., Understanding Ras: ‘it ain’t over ‘til it’s over’.Trends Cell Biol., 10, 147–154 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Shin, I. C., Kim, S. H., Song, H., Choi Kim, H. R., and Moon, A., H-Ras-specific activation of Rac-MKK3/6-p38 pathway.J. Biol. Chem., 15, 14675–14683 (2005).

    Article  CAS  Google Scholar 

  • Simon, C., Goepfert, H., and Boyd, D., Inhibition of the p38 mitogen-activated protein kinase by SB 203580 blocks PMA-induced Mr 92,000 type IV collagenase secretion andin vitro invasion.Cancer Res., 58, 1135–1139 (1998).

    PubMed  CAS  Google Scholar 

  • Simon, C., Juarez, J., Nicolson, G. L., and Boyd, D., Effect of PD 098059, a specific inhibitor of mitogen-activated protein kinase kinase, on urokinase expression andin vitro invasion.Cancer Res., 56, 5369–5374 (1996).

    PubMed  CAS  Google Scholar 

  • Simon, C., Simon, M., Vucelic, G., Hicks, M. J., Plinkert, P. K., Koitschev, A., and Zenner, H. P., The p38 SAPK pathway regulates the expression of the MMP-9 collagenase via AP-1-dependent promoter activation.Exp. Cell Res., 271, 344–355 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Simons, K. and Toomre, D., Lipid rafts and signal transduction.Nat. Rev. Mol. Cell Biol., 1, 31–39 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Steller-Stevenson, W. G., Type-IV collagenases in tumor invasion and metastasis.Cancer Metast. Rev., 9, 289–303 (1990).

    Article  Google Scholar 

  • Stetler-Stevenson, W. G., Hewitt, R., and Corcoran, M., Matrix metalloproteinases and tumor invasion: from correlation and causality to the clinic.Semin. Cancer Biol., 7, 147–154 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Talvensaari-Mattila, A., Paakko, P., Blanco-Sequeiros, G., and Turpeenniemi-Hujanen, T., Matrix metalloproteinase-2 (MMP-2) is associated with the risk for a relapse in postmenopausal patients with node-positive breast carcinoma treated with antiestrogen adjuvant therapy.Breast Cancer Res. Treat., 65, 55–61 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Tryggvason, K., Huhtala, P., Tuuttila, A., Chow, L., Keski-Oja, J., and Lohi, J., Structure and expression of type IV collagenase genes.Cell. Differ. Dev., 32, 307–312 (1990).

    Article  PubMed  CAS  Google Scholar 

  • Tryggvason, K., Type-IV collagenase in invasive tumors.Breast Cancer Res. Treat., 24, 209–218 (1993).

    Article  PubMed  CAS  Google Scholar 

  • Umanoff, H., Edelmann, W., Pellicer, A., and Kucherlapati, R., The murine N-ras gene is not essential for growth and development.Proc. Natl. Acad. Sci. U.S.A., 92, 1709–1713 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Ura, H., Bonfil, R. D., Reich, R., Reddel, R., Pfeifer, A., Harris, C. C., and Klein-Szanto, A. J., Expression of type IV collagenase and procollagen genes and its correlation with the tumorigenic, invasive, and metastatic abilities of oncogene-transformed human bronchial epithelial cells.Cancer Res., 49, 4615–4621 (1989).

    PubMed  CAS  Google Scholar 

  • Vaudry, D., Stork, P. J., Lazarovici, P., and Eiden, L. E., Signaling pathways for PC12 cell differentiation: making the right connections.Science, 296, 1648–1649 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Voice, J. K., Klemke, R. L., Le, A., and Jackson, J. H., Four Human Ras Homologs Differ in Their Abilities to Activate Raf-1, Induce Transformation, and Stimulate Cell Motility.J. Biol. Chem., 274, 17164–17170 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Walsh, A. B. and Bar-Sagi, D., Differential activation of the Rac pathway by Ha-Ras and K-Ras.J. Biol. Chem., 276, 15609–152001 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Watson, D. M., Elton, R. A., Jack, W. J., Dixon, J. M., Chetty, U., and Miller, W. R., The H-ras oncogene product p21 and prognosis in human breast cancer.Breast Cancer Res. Treat., 17, 161–169 (1991).

    Article  PubMed  CAS  Google Scholar 

  • Welch, H. C., Coadwell, W. J., Stephens, L. R., and Hawkins, P. T., Phosphoinositide 3-kinase-dependent activation of Rac.FEBS Lett., 546, 93–97 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Willumsen, B. M., Christensen, A., Hubbert, N. L., Papageorge, A. G., and Lowy, D. R., The p21 ras C-terminus is required for transformation and membrane association.Nature, 310, 583–586 (1984a).

    Article  PubMed  CAS  Google Scholar 

  • Willumsen, B. M., Norris, K., Papageorge, A. G., Hubbert, N. L., and Lowy, D. R., Harvey murine sarcoma virus p21 ras protein: biological and biochemical significance of the cysteine nearest the carboxy terminus.EMBO J., 3, 2581–2585 (1984b).

    PubMed  CAS  Google Scholar 

  • Wolthuis, R. M. and Bos, J. L., Ras caught in another affaif: the RHOad less traveled gets congested.Oncogene, 17, 1415–1438 (1999).

    Google Scholar 

  • Xu, Q., Karouji, Y., Kobayashi, M., Ihara, S., Konishi, H., and Fukui, Y., The PI 3-kinase-Rac-p38 MAP kinase pathway is involved in the formation of signet-ring cell carcinoma.Oncogene, 22, 5537–5544 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Yan, J., Roy, S., Apolloni, A., Lane, A., and Hancock, J. F., Ras isoforms vary in their ability to activate Raf-1 and phosphoinositide 3-kinase.J. Biol. Chem., 273, 24052–24056 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Yordy, J. S. and Muise-Helmericks, R. C., Signal transduction and the Ets family of transcription factors.Oncogene, 19, 6503–6513 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Zhang, D., Bar-Eli, M., Meloche, S., and Brodt, P., Dual regulation of MMP-2 expression by the type 1 insulin-like growth factor receptor: the phosphatidylinositol 3-kinase/Akt and Raf/ERK pathways transmit opposing signals.J. Biol. Chem., 279, 19683–19690 (2004).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aree Moon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moon, A. Differential functions of ras for malignant phenotypic conversion. Arch Pharm Res 29, 113–122 (2006). https://doi.org/10.1007/BF02974271

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02974271

Key words

Navigation