Skip to main content

Ras Signaling in Breast Cancer

  • Chapter
  • First Online:
Translational Research in Breast Cancer

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1187))

Abstract

Ras proteins mediate extracellular and cytoplasmic signaling networks via receptor tyrosine kinase. The Ras pathway induces activation of signaling molecules involved in cell proliferation and growth, cell survival and apoptosis, metabolism, and motility. Although Ras mutations in breast cancer are not frequently reported, hyperactivation of Ras signaling plays an important role in breast cancer growth and progression. Oncogenic Ras activation occurs via loss of Ras GTPase-activating proteins, overexpression of growth factor receptor, and stimulation by various cytokines. Effective control of oncogenic Ras is one of the therapeutic strategies in breast cancer. The mechanisms of intracellular localization, activation, and signaling pathway of Ras in cancer have been used to develop therapeutic candidates. Recent studies have reported an effective therapy for breast cancer by inhibition of enzymes involved in the posttranslational modification of Ras, such as farnesyltransferase and geranylgeranyltransferase 1, and anti-cancer therapies targeting the epidermal growth factor receptor (EGFR). Emerging targets involved in EGF-mediated Ras activity in breast cancer have shed new insight into Ras activation in breast cancer progression. These alternative mechanisms for Ras signaling pathway may suggest novel therapeutic approaches for targeting Ras in breast cancer. In spite of the difficulties in targeting Ras protein, important discoveries highlight the direct inhibition of Ras activity. Further studies may elucidate the effects of targeting Ras protein and the clinical relevance thereof.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fernández-Medarde A, Santos E. Ras in cancer and developmental diseases. Genes Cancer. 2011;2(3):344–58.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Zhao Y, Adjei AA. The clinical development of MEK inhibitors. Nat Rev Clin Oncol. 2014;11(7):385–400.

    Article  CAS  PubMed  Google Scholar 

  3. Rajalingam K, Schreck R, Rapp UR, Albert S. Ras oncogenes and their downstream targets. Biochim Biophys Acta. 2007;1773(8):1177–95.

    Article  CAS  PubMed  Google Scholar 

  4. Hobbs GA, Der CJ, Rossman KL. RAS isoforms and mutations in cancer at a glance. J Cell Sci. 2016;129(7):1287–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Cerami E, Gao J, Dogrusoz U, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2(5):401–4.

    Article  PubMed  Google Scholar 

  6. CGAN (Cancer Genome Atlas Network). Comprehensive molecular portraits of human breast tumours. Nature. 2012;490(7418):61–70.

    Article  CAS  Google Scholar 

  7. Giltnane JM, Balko JM. Rationale for targeting the Ras/MAPK pathway in triple-negative breast cancer. Discov Med. 2014;17(95):275–83.

    PubMed  Google Scholar 

  8. Wright KL, Adams JR, Liu JC, et al. Ras signaling is a key determinant for metastatic dissemination and poor survival of luminal breast Cancer patients. Cancer Res. 2015;75(22):4960–72.

    Article  CAS  PubMed  Google Scholar 

  9. Park K, Han S, Shin E, Kim HJ, Kim JY. EGFR gene and protein expression in breast cancers. Eur J Surg Oncol. 2007;33(8):956–60.

    Article  CAS  PubMed  Google Scholar 

  10. Howell SJ, Hockenhull K, Salih Z, Evans DG. Increased risk of breast cancer in neurofibromatosis type 1: current insights. Breast Cancer (Dove Med Press). 2017;9:531–6.

    Google Scholar 

  11. Suárez-Cabrera C, Quintana RM, Bravo A, et al. A transposon-based analysis reveals RASA1 is involved in triple-negative breast cancer. Cancer Res. 2017;77(6):1357–68.

    Article  PubMed  CAS  Google Scholar 

  12. Olsen SN, Wronski A, Castaño Z, et al. Loss of RasGAP tumor suppressors underlies the aggressive nature of luminal B breast cancers. Cancer Discov. 2017;7(2):202–17.

    Article  CAS  PubMed  Google Scholar 

  13. Koh M, Yong HY, Kim ES, Son H, Jeon YR, Hwang JS, et al. A novel role for flotillin-1 in H-Ras-regulated breast cancer aggressiveness. Int J Cancer. 2016;138(5):1232–45.

    Article  CAS  PubMed  Google Scholar 

  14. Shin I, Kim S, Song H, Kim HR, Moon A. H-Ras-specific activation of Rac-MKK3/6-p38 pathway: its critical role in invasion and migration of breast epithelial cells. J Biol Chem. 2005;280(15):14675–83.

    Article  CAS  PubMed  Google Scholar 

  15. Kim MS, Lee EJ, Kim HR, Moon A. p38 kinase is a key signaling molecule for H-Ras-induced cell motility and invasive phenotype in human breast epithelial cells. Cancer Res. 2003;63(17):5454–61.

    CAS  PubMed  Google Scholar 

  16. Moon A, Kim MS, Kim TG, et al. H-ras, but not N-ras, induces an invasive phenotype in human breast epithelial cells: a role for MMP-2 in the H-ras-induced invasive phenotype. Int J Cancer. 2000;85(2):176–81.

    Article  CAS  PubMed  Google Scholar 

  17. Koh M, Woo Y, Valiathan RR, et al. Discoidin domain receptor 1 is a novel transcriptional target of ZEB1 in breast epithelial cells undergoing H-Ras-induced epithelial to mesenchymal transition. Int J Cancer. 2015;136(6):E508–20.

    Article  CAS  PubMed  Google Scholar 

  18. Stacey DW, Kung HF. Transformation of NIH 3T3 cells by microinjection of Ha-ras p21 protein. Nature. 1984;310(5977):508–11.

    Article  CAS  PubMed  Google Scholar 

  19. Feramisco JR, Gross M, Kamata T, Rosenberg M, Sweet RW. Microinjection of the oncogene form of the human H-ras (T-24) protein results in rapid proliferation of quiescent cells. Cell. 1984;38(1):109–17.

    Article  CAS  PubMed  Google Scholar 

  20. McCarthy SA, Samuels ML, Pritchard CA, Abraham JA, McMahon M. Rapid induction of heparin-binding epidermal growth factor/diphtheria toxin receptor expression by Raf and Ras oncogenes. Genes Dev. 1995;9(16):1953–64.

    Article  CAS  PubMed  Google Scholar 

  21. Gangarosa LM, Sizemore N, Graves-Deal R, Oldham SM, Der CJ, Coffey RJ. A raf-independent epidermal growth factor receptor autocrine loop is necessary for Ras transformation of rat intestinal epithelial cells. J Biol Chem. 1997;272(30):18926–31.

    Article  CAS  PubMed  Google Scholar 

  22. Woods D, Cherwinski H, Venetsanakos E. Induction of β3-integrin gene expression by sustained activation of the Ras-regulated Raf-MEK-extracellular signal-regulated kinase signaling pathway. Mol Cell Biol. 2001;21(9):3192–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dajee M, Tarutani M, Deng H, Cai T, Khavari PA. Epidermal Ras blockade demonstrates spatially localized Ras promotion of proliferation and inhibition of differentiation. Oncogene. 2002;21(10):1527–38.

    Article  CAS  PubMed  Google Scholar 

  24. Gutman A, Wasylyk C, Wasylyk B. Cell-specific regulation of oncogene-responsive sequences of the C-fos promoter. Mol Cell Biol. 1991;11(10):5381–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Urich M, Senften M, Shaw PE, Ballmer-Hofer K. A role for the small GTPase Rac in polyomavirus middle-T antigen-mediated activation of the serum response element and in cell transformation. Oncogene. 1997;14(10):1235–41.

    Article  CAS  PubMed  Google Scholar 

  26. Westwick JK, Cox AD, Der CJ, et al. Oncogenic Ras activates c-Jun via a separate pathway from the activation of extracellular signal-regulated kinases. Proc Natl Acad Sci U S A. 1994;91(13):6030–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Finco TS, Westwick JK, Norris JL, Beg AA, Der CJ, Baldwin AS Jr. Oncogenic Ha-Ras-induced signaling activates NF-κB transcriptional activity, which is required for cellular transformation. J Biol Chem. 1997;272(39):24113–6.

    Article  CAS  PubMed  Google Scholar 

  28. Filmus J, Robles AI, Shi W, Wong MJ, Colombo LL, Conti CJ. Induction of cyclin D1 overexpression by activated ras. Oncogene. 1994;9(12):3627–33.

    CAS  PubMed  Google Scholar 

  29. Diehl JA, Cheng M, Roussel MF, Sherr CJ. Glycogen synthase kinase-3β regulates cyclin D1 proteolysis and subcellular localization. Genes Dev. 1998;12(22):3499–511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kfir S, Ehrlich M, Goldshmid A, Liu X, Kloog Y, Henis YI. Pathway- and expression level-dependent effects of oncogenic N-Ras: p27(Kip1) mislocalization by the Ral-GEF pathway and Erk-mediated interference with Smad signaling. Mol Cell Biol. 2005;25(18):8239–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sa G, Stacey DW. P27 expression is regulated by separate signaling pathways, downstream of Ras, in each cell cycle phase. Exp Cell Res. 2004;300(2):427–39.

    Article  CAS  PubMed  Google Scholar 

  32. Denko N, Stringer J, Wani M, Stambrook P. Mitotic and post mitotic consequences of genomic instability induced by oncogenic Ha-ras. Somat Cell Mol Genet. 1995;21(4):241–53.

    Article  CAS  PubMed  Google Scholar 

  33. Knauf JA, Ouyang B, Knudsen ES, Fukasawa K, Babcock G, Fagin JA. Oncogenic RAS induces accelerated transition through G2/M and promotes defects in the G2 DNA damage and mitotic spindle checkpoints. J Biol Chem. 2006;281(7):3800–9.

    Article  CAS  PubMed  Google Scholar 

  34. Cox AD, Der CJ. The dark side of Ras: regulation of apoptosis. Oncogene. 2003;22(56):8999–9006.

    Article  CAS  PubMed  Google Scholar 

  35. Vos MD, Ellis CA, Bell A, Birrer MJ, Clark GJ. Ras uses the novel tumor suppressor RASSF1 as an effector to mediate apoptosis. J Biol Chem. 2000;275(46):35669–72.

    Article  CAS  PubMed  Google Scholar 

  36. Khokhlatchev A, Rabizadeh S, Xavier R, et al. Identification of a novel Ras-regulated proapoptotic pathway. Curr Biol. 2002;12(4):253–65.

    Article  CAS  PubMed  Google Scholar 

  37. Ahmed MM, Sheldon D, Fruitwala MA, et al. Downregulation of PAR-4, a pro-apoptotic gene, in pancreatic tumors harboring K-ras mutation. Int J Cancer. 2008;122(1):63–70.

    Article  CAS  PubMed  Google Scholar 

  38. Wu L, Nam YJ, Kung G, Crow MT, Kitsis RN. Induction of the apoptosis inhibitor ARC by Ras in human cancers. J Biol Chem. 2010;285(25):19235–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kennedy NJ, Sluss HK, Jones SN, Bar-Sagi D, Flavell RA, Davis RJ. Suppression of Ras-stimulated transformation by the JNK signal transduction pathway. Genes Dev. 2003;17(5):629–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lei K, Nimnual A, Zong WX, et al. The Bax subfamily of Bcl2-related proteins is essential for apoptotic signal transduction by c-Jun NH(2)-terminal kinase. Mol Cell Biol. 2002;22(13):4929–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pylayeva-Gupta Y, Grabocka E, Bar-Sagi D. RAS oncogenes: weaving a tumorigenic web. Nat Rev Cancer. 2011;11(11):761–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jones RG, Thompson CB. Tumor suppressors and cell metabolism: a recipe for cancer growth. Genes Dev. 2009;23(5):537–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mathupala SP, Heese C, Pedersen PL. Glucose catabolism in cancer cells. The type II hexokinase promoter contains functionally active response elements for the tumor suppressor p53. J Biol Chem. 1997;272(36):22776–80.

    Article  CAS  PubMed  Google Scholar 

  44. Johannessen CM, Reczek EE, James MF, Brems H, Legius E, Cichowski K. The NF1 tumor suppressor critically regulates TSC2 and mTOR. Proc Natl Acad Sci U S A. 2005;102(24):8573–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Foster KG, Fingar DC. Mammalian target of rapamycin (mTOR): conducting the cellular signaling symphony. J Biol Chem. 2010;285(19):14071–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Flier JS, Mueckler MM, Usher P, Lodish HF. Elevated levels of glucose transport and transporter messenger RNA are induced by ras or src oncogenes. Science. 1987;235(4795):1492–5.

    Article  CAS  PubMed  Google Scholar 

  47. Dang CV, Semenza GL. Oncogenic alterations of metabolism. Trends Biochem Sci. 1999;24(2):68–72.

    Article  CAS  PubMed  Google Scholar 

  48. Chen C, Pore N, Behrooz A, Ismail-Beigi F, Maity A. Regulation of glut1 mRNA by hypoxia-inducible factor-1. Interaction between H-ras and hypoxia. J Biol Chem. 2001;276(12):9519–25.

    Article  CAS  PubMed  Google Scholar 

  49. Guo JY, Chen HY, Mathew R, et al. Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis. Genes Dev. 2011;25(5):460–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lock R, Roy S, Kenific CM, et al. Autophagy facilitates glycolysis during Ras-mediated oncogenic transformation. Mol Biol Cell. 2010;22(2):165–78.

    Article  PubMed  Google Scholar 

  51. Grunert S, Jechlinger M, Beug H. Diverse cellular and molecular mechanisms contribute to epithelial plasticity and metastasis. Nat Rev Mol Cell Biol. 2003;4(8):657–65.

    Article  PubMed  CAS  Google Scholar 

  52. Smakman N, Borel Rinkes IH, Voest EE, Kranenburg O. Control of colorectal metastasis formation by K-Ras. Biochim Biophys Acta. 2005;1756(2):103–14.

    CAS  PubMed  Google Scholar 

  53. Bondy GP, Wilson S, Chambers AF. Experimental metastatic ability of H-ras-transformed NIH3T3 cells. Cancer Res. 1985;45(12 Pt 2):6005–9.

    CAS  PubMed  Google Scholar 

  54. Huber MA, Kraut N, Beug H. Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr Opin Cell Biol. 2005;17(5):548–58.

    Article  CAS  PubMed  Google Scholar 

  55. Schmidt CR, Gi YJ, Patel TA, Coffey RJ, Beauchamp RD, Pearson AS. E-cadherin is regulated by the transcriptional repressor SLUG during Ras-mediated transformation of intestinal epithelial cells. Surgery. 2005;138(2):306–12.

    Article  PubMed  Google Scholar 

  56. Horiguchi K, Shirakihara T, Nakano A, Imamura T, Miyazono K, Saitoh M. Role of Ras signaling in the induction of snail by transforming growth factor-β. J Biol Chem. 2009;284(1):245–53.

    Article  CAS  PubMed  Google Scholar 

  57. Plantefaber LC, Hynes RO. Changes in integrin receptors on oncogenically transformed cells. Cell. 1989;56(2):281–90.

    Article  CAS  PubMed  Google Scholar 

  58. Danen EH, Yamada KM. Fibronectin, integrins, and growth control. J Cell Physiol. 2001;189(1):1–13.

    Article  CAS  PubMed  Google Scholar 

  59. Pollock CB, Shirasawa S, Sasazuki T, Kolch W, Dhillon AS. Oncogenic K-RAS is required to maintain changes in cytoskeletal organization, adhesion, and motility in colon cancer cells. Cancer Res. 2005;65(4):1244–50.

    Article  CAS  PubMed  Google Scholar 

  60. Campbell PM, Der CJ. Oncogenic Ras and its role in tumor cell invasion and metastasis. Semin Cancer Biol. 2004;14(2):105–14.

    Article  CAS  PubMed  Google Scholar 

  61. Frisch SM, Francis H. Disruption of epithelial cell-matrix interactions induces apoptosis. J Cell Biol. 1994;124(4):619–26.

    Article  CAS  PubMed  Google Scholar 

  62. Rosen K, Rak J, Leung T, Dean NM, Kerbel RS, Filmus J. Activated Ras prevents downregulation of Bcl-X(L) triggered by detachment from the extracellular matrix. A mechanism of Ras-induced resistance to anoikis in intestinal epithelial cells. J Cell Biol. 2000;149(2):447–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zondag GC, Evers EE, ten Klooster JP, Janssen L, van der Kammen RA, Collard JG. Oncogenic Ras downregulates Rac activity, which leads to increased Rho activity and epithelial-mesenchymal transition. J Cell Biol. 2000;149(4):775–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Braga VM, Betson M, Li X, Lamarche-Vane N. Activation of the small GTPase Rac is sufficient to disrupt cadherin-dependent cell-cell adhesion in normal human keratinocytes. Mol Biol Cell. 2000;11(11):3703–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Turley EA, Veiseh M, Radisky DC, Bissell MJ. Mechanisms of disease: epithelial-mesenchymal transition--does cellular plasticity fuel neoplastic progression? Nat Clin Pract Oncol. 2008;5(5):280–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Song H, Ki SH, Kim SG, Moon A. Activating transcription factor 2 mediates matrix metalloproteinase-2 transcriptional activation induced by p38 in breast epithelial cells. Cancer Res. 2006;66(21):10487–96.

    Article  CAS  PubMed  Google Scholar 

  67. Yong HY, Hwang JS, Son H, et al. Identification of H-Ras-specific motif for the activation of invasive signaling program in human breast epithelial cells. Neoplasia. 2011;13(2):98–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zheng ZY, Tian L, Bu W, et al. Wild-type N-Ras, overexpressed in basal-like breast cancer, promotes tumor formation by inducing IL-8 secretion via JAK2 activation. Cell Rep. 2015;12(3):511–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ricoult SJ, Yecies JL, Ben-Sahra I, Manning BD. Oncogenic PI3K and K-Ras stimulate de novo lipid synthesis through mTORC1 and SREBP. Oncogene. 2016;35(10):1250–60.

    Article  CAS  PubMed  Google Scholar 

  70. Kim MJ, Woo SJ, Yoon CH, et al. Involvement of autophagy in oncogenic K-Ras-induced malignant cell transformation. J Biol Chem. 2011;286(15):12924–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Shalom-Feuerstein R, Plowman SJ, Rotblat B, et al. K-ras nanoclustering is subverted by overexpression of the scaffold protein galectin-3. Cancer Res. 2008;68(16):6608–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kim RK, Suh Y, Yoo KC, et al. Activation of KRAS promotes the mesenchymal features of basal-type breast cancer. Exp Mol Med. 2015;47(1):e137.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Thiery JP. Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer. 2002;2(6):442–54.

    Article  CAS  PubMed  Google Scholar 

  74. Vuoriluoto K, Haugen H, Kiviluoto S, et al. Vimentin regulates EMT induction by Slug and oncogenic H-Ras and migration by governing Axl expression in breast cancer. Oncogene. 2011;30(12):1436–48.

    Article  CAS  PubMed  Google Scholar 

  75. Yoh KE, Regunath K, Guzman A, et al. Repression of p63 and induction of EMT by mutant Ras in mammary epithelial cells. Proc Natl Acad Sci U S A. 2016;113(41):E6107–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Remacle JE, Kraft H, Lerchner W, et al. New mode of DNA binding of multi-zinc finger transcription factors: deltaEF1 family members bind with two hands to two target sites. EMBO J. 1999;18(18):5073–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Massague J. TGF-beta signal transduction. Annu Rev Biochem. 1998;67:753–91.

    Article  CAS  PubMed  Google Scholar 

  78. Whitman M. Smads and early developmental signaling by the TGFbeta superfamily. Genes Dev. 1998;12:2445–62.

    Article  CAS  PubMed  Google Scholar 

  79. Kim ES, Kim MS, Moon A. Transforming growth factor (TGF)-beta in conjunction with H-ras activation promotes malignant progression of MCF10A breast epithelial cells. Cytokine. 2005;29(2):84–91.

    Article  CAS  PubMed  Google Scholar 

  80. Oft M, Akhurst RJ, Balmain A. Metastasis is driven by sequential elevation of H-ras and Smad2 levels. Nat Cell Biol. 2002;4:487–94.

    Article  CAS  PubMed  Google Scholar 

  81. Lehmann K, Janda E, Pierreux CE, et al. Beug H and downward J. Raf induces TGFbeta production while blocking its apoptotic but not invasive responses: a mechanism leading to increased malignancy in epithelial cells. Genes Dev. 2000;14:2610–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kim H, Choi JA, Kim JH. Ras promotes transforming growth factor-β (TGF-β)-induced epithelial-mesenchymal transition via a leukotriene B4 receptor-2-linked cascade in mammary epithelial cells. J Biol Chem. 2014;289(32):22151–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Lin S, Yang J, Elkahloun AG, et al. Attenuation of TGF-β signaling suppresses premature senescence in a p21-dependent manner and promotes oncogenic Ras-mediated metastatic transformation in human mammary epithelial cells. Mol Biol Cell. 2012;23(8):1569–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Vasilaki E, Morikawa M, Koinuma D, et al. Ras and TGF-β signaling enhance cancer progression by promoting the ΔNp63 transcriptional program. Sci Signal. 2016;9(442):ra84.

    Article  PubMed  CAS  Google Scholar 

  85. Khazaie K, Schirrmacher V, Lichtner RB. EGF receptor in neoplasia and metastasis. Cancer Metastasis Rev. 1993;12(3–4):255–74.

    Article  CAS  PubMed  Google Scholar 

  86. Hunter T. Oncoprotein networks. Cell. 1997;88(3):333–46.

    Article  CAS  PubMed  Google Scholar 

  87. Blume-Jensen P, Hunter T. Oncogenic kinase signalling. Nature. 2001;411(6835):355–65.

    Article  CAS  PubMed  Google Scholar 

  88. Chu PY, Li TK, Ding ST, Lai IR, Shen TL. EGF-induced Grb7 recruits and promotes Ras activity essential for the tumorigenicity of Sk-Br3 breast cancer cells. J Biol Chem. 2010;285(38):29279–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Li B, Antonyak MA, Druso JE, et al. EGF potentiated oncogenesis requires a tissue transglutaminase-dependent signaling pathway leading to Src activation. Proc Natl Acad Sci U S A. 2010;107(4):1408–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Koh MS, Moon A. Activation of H-Ras and Rac1 correlates with epidermal growth factor-induced invasion in Hs578T and MDA-MB-231 breast carcinoma cells. Biochem Biophys Res Commun. 2011;406(1):25–9.

    Article  CAS  PubMed  Google Scholar 

  91. Zhao B, Hu W, Kumar S, et al. The Nogo-B receptor promotes Ras plasma membrane localization and activation. Oncogene. 2017;36(24):3406–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Demetri GD, Griffin JD. Granulocyte colony-stimulating factor and its receptor. Blood. 1991;78:2791–808.

    Article  CAS  PubMed  Google Scholar 

  93. Park S, Kim ES, Noh DY, Hwang KT, Moon A. H-Ras-specific upregulation of granulocyte colony-stimulating factor promotes human breast cell invasion via matrix metalloproteinase-2. Cytokine. 2011;55(1):126–33.

    Article  CAS  PubMed  Google Scholar 

  94. Phan VT, Wu X, Cheng JH, et al. Oncogenic RAS pathway activation promotes resistance to anti-VEGF therapy through G-CSF-induced neutrophil recruitment. Proc Natl Acad Sci U S A. 2013;110(15):6079–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Rajasekharan SK, Ramen T. Ras and Ras mutations in cancer. Cent Eur J Biol. 2013;8(7):609–24.

    CAS  Google Scholar 

  96. Martinelli E, De Palma R, Orditura M, De Vita F, Ciardiello F. Anti-epidermal growth factor receptor monoclonal antibodies in cancer therapy. Clin Exp Immunol. 2009;158(1):1–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Heinemann V, Stintzing S, Kirchner T, Boeck S, Jung A. Clinical relevance of EGFR- and KRAS-status in colorectal cancer patients treated with monoclonal antibodies directed against the EGFR. Cancer Treat Rev. 2009;35(3):262–71.

    Article  CAS  PubMed  Google Scholar 

  98. Giaccone G, Herbst RS, Manegold C, et al. Gefitinib in combination with gemcitabine and cisplatin in advanced non-small-cell lung cancer: a phase III trial–INTACT 1. J Clin Oncol. 2004;22(5):777–84.

    Article  CAS  PubMed  Google Scholar 

  99. Perez-Soler R, Chachoua A, Hammond LA, et al. Determinants of tumor response and survival with erlotinib in patients with non-small-cell lung cancer. J Clin Oncol. 2004;22(16):3238–47.

    Article  CAS  PubMed  Google Scholar 

  100. Herbst RS, Johnson DH, Mininberg E, et al. Phase I/II trial evaluating the anti-vascular endothelial growth factor monoclonal antibody bevacizumab in combination with the HER-1/epidermal growth factor receptor tyrosine kinase inhibitor erlotinib for patients with recurrent non-small-cell lung cancer. J Clin Oncol. 2005;23(11):2544–55.

    Article  CAS  PubMed  Google Scholar 

  101. Cox AD, Der CJ. Farnesyltransferase inhibitors and cancer treatment: targeting simply Ras. Biochim Biophys Acta. 1997;1333(1):F51–71.

    CAS  PubMed  Google Scholar 

  102. Reuter CW, Morgan MA, Bergmann L. Targeting the Ras signaling pathway: a rational, mechanism-based treatment for hematologic malignancies? Blood. 2000;96(5):1655–69.

    Article  CAS  PubMed  Google Scholar 

  103. Alsina M, Fonseca R, Wilson EF, et al. Farnesyltransferase inhibitor tipifarnib is well tolerated, induces stabilization of disease, and inhibits farnesylation and oncogenic/tumor survival pathways in patients with advanced multiple myeloma. Blood. 2004;103(9):3271–7.

    Article  CAS  PubMed  Google Scholar 

  104. James GL, Goldstein JL, Brown MS, et al. Benzodiazepine peptidomimetics: potent inhibitors of Ras farnesylation in animal cells. Science. 1993;260(5116):1937–42.

    Article  CAS  PubMed  Google Scholar 

  105. Kohl NE, Mosser SD, deSolms SJ, et al. Selective inhibition of ras-dependent transformation by a farnesyltransferase inhibitor. Science. 1993;260(5116):1934–7.

    Article  CAS  PubMed  Google Scholar 

  106. Kohl NE, Omer CA, Conner MW, et al. Inhibition of farnesyltransferase induces regression of mammary and salivary carcinomas in ras transgenic mice. Nat Med. 1995;1(8):792–7.

    Article  CAS  PubMed  Google Scholar 

  107. Lee KH, Koh M, Moon A. Farnesyl transferase inhibitor FTI-277 inhibits breast cell invasion and migration by blocking H-Ras activation. Oncol Lett. 2016;12(3):2222–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Tanaka T, Ikegami Y, Nakazawa H, et al. Low-dose Farnesyltransferase inhibitor suppresses HIF-1α and snail expression in triple-negative breast cancer MDA-MB-231 cells in vitro. J Cell Physiol. 2017;232(1):192–201.

    Article  CAS  PubMed  Google Scholar 

  109. Balasis ME, Forinash KD, Chen YA, et al. Combination of farnesyltransferase and Akt inhibitors is synergistic in breast cancer cells and causes significant breast tumor regression in ErbB2 transgenic mice. Clin Cancer Res. 2011;17(9):2852–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Martin LA, Head JE, Pancholi S, et al. The farnesyltransferase inhibitor R115777 (tipifarnib) in combination with tamoxifen acts synergistically to inhibit MCF-7 breast cancer cell proliferation and cell cycle progression in vitro and in vivo. Mol Cancer Ther. 2007;6(9):2458–67.

    Article  CAS  PubMed  Google Scholar 

  111. Johnston SR, Hickish T, Ellis P, et al. Phase II study of the efficacy and tolerability of two dosing regimens of the farnesyl transferase inhibitor, R115777, in advanced breast cancer. J Clin Oncol. 2003;21(13):2492–9.

    Article  CAS  PubMed  Google Scholar 

  112. Aoki K, Ohnami S, Yoshida T. Suppression of pancreatic and colon cancer cells by antisense K-ras RNA expression vectors. Methods Mol Med. 2005;106:193–204.

    CAS  PubMed  Google Scholar 

  113. Rotblat B, Ehrlich M, Haklai R, Kloog Y. The Ras inhibitor farnesyl thio salicylic acid (Salirasib) disrupts the spatiotemporal localization of active Ras: a potential treatment for cancer. Methods Enzymol. 2008;439:467–89.

    Article  CAS  PubMed  Google Scholar 

  114. Barkan B, Starinsky S, Friedman E, Stein R, Kloog Y. The Ras inhibitor farnesyl thio salicylic acid as a potential therapy for neurofibromatosis type 1. Clin Cancer Res. 2006;12(18):5533–42.

    Article  CAS  PubMed  Google Scholar 

  115. Moore M, Hirte HW, Siu L, et al. Phase I study to determine the safety and pharmacokinetics of the novel Raf kinase and VEGFR inhibitor BAY 43-9006, administered for 28 days on/7 days off in patients with advanced, refractory solid tumors. Ann Oncol. 2005;16(10):1688–94.

    Article  CAS  PubMed  Google Scholar 

  116. Endres M, Laufs U, Huang Z, et al. Stroke protection by 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase inhibitors mediated by endothelial nitric oxide synthase. Proc Natl Acad Sci U S A. 1998;95:8880–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Mc Menamin ÚC, Murray LJ, Hughes CM, Cardwell CR. Statin use and breast cancer survival: a nationwide cohort study in Scotland. BMC Cancer. 2016;16:600.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Wolfe AR, Debeb BG, Lacerda L, et al. Simvastatin prevents triple-negative breast cancer metastasis in pre-clinical models through regulation of FOXO3a. Breast Cancer Res Treat. 2015;154(3):495–508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Lee HS, Lee SH, Lee HJ, et al. Statin use and its impact on survival in pancreatic cancer patients. Medicine (Baltimore). 2016;95(19):e3607.

    Article  CAS  Google Scholar 

  120. Li G, Zheng J, Xu B, Ling J, Qiu W, Wang Y. Simvastatin inhibits tumor angiogenesis in HER2-overexpressing human colorectal cancer. Biomed Pharmacother. 2017;85:418–24.

    Article  CAS  PubMed  Google Scholar 

  121. Kang S, Kim ES, Moon A. Simvastatin and lovastatin inhibit breast cell invasion induced by H-Ras. Oncol Rep. 2009;21(5):1317–22.

    PubMed  Google Scholar 

  122. Kang M, Lee KH, Lee HS, et al. Concurrent treatment with simvastatin and NF-κB inhibitor in human castration-resistant prostate cancer cells exerts synergistic anti-cancer effects via control of the NF-κB/LIN28/let-7 miRNA signaling pathway. PLoS One. 2017;12(9):e0184644.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Buranrat B, Senggunprai L, Prawan A, Kukongviriyapan V. Simvastatin and atorvastatin as inhibitors of proliferation and inducers of apoptosis in human cholangiocarcinoma cells. Life Sci. 2016;153:41–9.

    Article  CAS  PubMed  Google Scholar 

  124. Shen Y, Du Y, Zhang Y, Pan Y. Synergistic effects of combined treatment with simvastatin and exemestane on MCF-7 human breast cancer cells. Mol Med Rep. 2015;12(1):456–62.

    Article  CAS  PubMed  Google Scholar 

  125. Babcook MA, Sramkoski RM, Fujioka H, et al. Combination simvastatin and metformin induces G1-phase cell cycle arrest and Ripk1- and Ripk3-dependent necrosis in C4-2B osseous metastatic castration-resistant prostate cancer cells. Cell Death Dis. 2014;5:e1536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Wattenberg LW. Inhibition of carcinogenesis by minor anutrient constituents of the diet. Proc Natl Acad Sci. 1990;49:173–83.

    CAS  Google Scholar 

  127. Dorai T, Cao YC, Dorai B, Buttyan R, Katz AE. Therapeutic potential of curcumin in human prostate cancer. Ill. Curcumin inhibits proliferation, induces apoptosis, and inhibits angiogenesis of LNCaP prostate cancer cells in vivo. Prostate. 2001;47:293–303.

    Article  CAS  PubMed  Google Scholar 

  128. Ramachandran C, You W. Differential sensitivity of human mammary epithelial and breast carcinoma cell lines to curcumin. Breast Cancer Res Treat. 1999;54:269–78.

    Article  CAS  PubMed  Google Scholar 

  129. Kim MS, Kang HJ, Moon A. Inhibition of invasion and induction of apoptosis by curcumin in H-ras-transformed MCF10A human breast epithelial cells. Arch Pharm Res. 2001;24(4):349–54.

    Article  CAS  PubMed  Google Scholar 

  130. Sepp-Lorenzino L, Rosen N. A farnesyl-protein transferase inhibitor induces p21 expression and G1 block in p53 wild type tumor cells. J Biol Chem. 1998;273:20243–51.

    Article  CAS  PubMed  Google Scholar 

  131. Eckert LB, Repasky GA, Ulkü AS, et al. Involvement of Ras activation in human breast cancer cell signaling, invasion, and anoikis. Cancer Res. 2004;64:4585–92.

    Article  CAS  PubMed  Google Scholar 

  132. Yoon MJ, Kim EH, Lim JH, Kwon TK, Choi KS. Superoxide anion and proteasomal dysfunction contribute to curcumin-induced paraptosis of malignant breast cancer cells. Free Radic Biol Med. 2010;48(5):713–26.

    Article  CAS  PubMed  Google Scholar 

  133. Calaf GM, Echiburú-Chau C, Wen G, Balajee AS, Roy D. Effect of curcumin on irradiated and estrogen-transformed human breast cell lines. Int J Oncol. 2012;40(2):436–42.

    CAS  PubMed  Google Scholar 

  134. Taurin S, Nimick M, Larsen L, Rosengren RJ. A novel curcumin derivative increases the cytotoxicity of raloxifene in estrogen receptor-negative breast cancer cell lines. Int J Oncol. 2016;48(1):385–98.

    Article  CAS  PubMed  Google Scholar 

  135. Iwai K, Suzuki T, Fujiwake H. Formation and accumulation of pungent principle of hot pepper fruits, capsaicin and its analogues, in Capsicum annuum var. annuum cv. Karayatsubusa at different growth stages after flowering. Agric Biol Chem. 1979;43:2493–8.

    CAS  Google Scholar 

  136. Tj S, Iwai K. Constitution of red pepper species: chemistry, biochemistry, pharmacology, and food science of the pungent principle of capsicum species. In: Brosi A, editor. The alkaloides. New York: Academic Press; 1984. p. 227–99.

    Google Scholar 

  137. Morre DJ, Chueh PJ, Morre DM. Capsaicin inhibits preferentially the NADH oxidase and growth of transformed cells in culture. Proc Natl Acad Sci U S A. 1995;92:1831–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Morre DJ, Sun E, Geilen C, et al. Capsaicin inhibits plasma membrane NADH oxidase and growth of human and mouse melanoma lines. Eur J Cancer. 1996;32A:1995–2003.

    Article  CAS  PubMed  Google Scholar 

  139. Kang SN, Chung SW, Kim TS. Capsaicin potentiates 1,25-dihydroxyvitamin D3- and all-trans retinoic acid-induced differentiation of human promyelocytic leukemia HL-60 cells. Eur J Pharmacol. 2001;420:83–90.

    Article  CAS  PubMed  Google Scholar 

  140. Kim JD, Kim JM, Pyo JO, et al. Capsaicin can alter the expression of tumor forming-related genes which might be followed by induction of apoptosis of a Korean stomach cancer cell line, SNU-1. Cancer Lett. 1997;120:235–41.

    Article  CAS  PubMed  Google Scholar 

  141. Jung MY, Kang HJ, Moon A. Capsaicin-induced apoptosis in SK-Hep-1hepatocarcinoma cells involves Bcl-2 downregulation and caspase-3 activation. Cancer Lett. 2001;165:139–45.

    Article  CAS  PubMed  Google Scholar 

  142. Qiao S, Li W, Tsubouchi R, Haneda M, Murakami K, Yoshino M. Involvement of peroxynitrite in capsaicin-induced apoptosis of C6 glioma cells. Neurosci Res. 2005;51:175–83.

    Article  CAS  PubMed  Google Scholar 

  143. Mori A, Lehmann S, O’Kelly J, et al. Capsaicin, a component of red peppers, inhibits the growth of androgen- independent, p53 mutant prostate cancer cells. Cancer Res. 2006;66:3222–9.

    Article  CAS  PubMed  Google Scholar 

  144. Kang HJ, Soh Y, Kim MS, et al. Roles of JNK-1 and p38 in selective induction of apoptosis by capsaicin in ras-transformed human breast epithelial cells. Int J Cancer. 2003;103(4):475–82.

    Article  CAS  PubMed  Google Scholar 

  145. Kim S, Moon A. Capsaicin-induced apoptosis of H-ras-transformed human breast epithelial cells is Rac-dependent via ROS generation. Arch Pharm Res. 2004;27(8):845–9.

    Article  CAS  PubMed  Google Scholar 

  146. Gysin S, Salt M, Young A, McCormick F. Therapeutic strategies for targeting Ras proteins. Gen Canc. 2011;2(3):359–72.

    Article  CAS  Google Scholar 

  147. Wu P, Liu T, Hu Y. PI3K inhibitors for cancer therapy: what has been achieved so far? Curr Med Chem. 2009;16(8):916–30.

    Article  CAS  PubMed  Google Scholar 

  148. Bennett BL, Sasaki DT, Murray BW, et al. SP600125, an anthrapyrazolone inhibitor of Jun N-terminal kinase. Proc Natl Acad Sci U S A. 2001;98(24):13681–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Bachman KE, Argani P, Samuels Y, et al. The PIK3CA gene is mutated with high frequency in human breast cancers. Cancer Biol Ther. 2004;3(8):772–5.

    Article  CAS  PubMed  Google Scholar 

  150. Feng M, Bao Y, Li Z, et al. RASAL2 activates RAC1 to promote triple-negative breast cancer progression. J Clin Invest. 2014;124(12):5291–304.

    Article  PubMed  PubMed Central  Google Scholar 

  151. McLaughlin SK, Olsen SN, Dake B, et al. The RasGAP gene, RASAL2, is a tumor and metastasis suppressor. Cancer Cell. 2013;24(3):365–78.

    Article  CAS  PubMed  Google Scholar 

  152. Liu M, Bryant MS, Chen J, et al. Antitumor activity of SCH 66336, an orally bioavailable tricyclic inhibitor of farnesyl protein transferase, in human tumor xenograft models and wap-ras transgenic mice. Cancer Res. 1998;58(21):4947–56.

    CAS  PubMed  Google Scholar 

  153. Van Cutsem E, van de Velde H, Karasek P, et al. Phase III trial of gemcitabine plus tipifarnib compared with gemcitabine plus placebo in advanced pancreatic cancer. J Clin Oncol. 2004;22(8):1430–8.

    Article  PubMed  CAS  Google Scholar 

  154. Cox AD, Fesik SW, Kimmelman AC, Luo J, Der CJ. Drugging the undruggable RAS: mission possible? Nat Rev Drug Discov. 2014;13(11):828–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Head J, Johnston SR. New targets for therapy in breast cancer: farnesyltransferase inhibitors. Breast Cancer Res. 2004;6(6):262–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Ostrem JM, Peters U, Sos ML, Wells JA, Shokat KM. K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions. Nature. 2013;503(7477):548–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Athuluri-Divakar SK, Vasquez-Del Carpio R, Dutta K, et al. A small molecule RAS-mimetic disrupts RAS association with effector proteins to block signaling. Cell. 2016;165(3):643–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Shin SM, Choi DK, Jung K, et al. Antibody targeting intracellular oncogenic Ras mutants exerts anti-tumour effects after systemic administration. Nat Commun. 2017;8:15090.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aree Moon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Moon, A. (2021). Ras Signaling in Breast Cancer. In: Noh, DY., Han, W., Toi, M. (eds) Translational Research in Breast Cancer. Advances in Experimental Medicine and Biology, vol 1187. Springer, Singapore. https://doi.org/10.1007/978-981-32-9620-6_4

Download citation

Publish with us

Policies and ethics