Skip to main content
Log in

Cytotoxic phenolic constituents ofAcer tegmentosum maxim

  • Articles
  • Drug Design
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

The chromatographic separation of the MeOH extract from the twigs ofAcer tegmentosum led to the isolation of ten phenolic compounds. The structures of these compounds were determined using spectroscopic methods as 3,7,3′,4′-tetramethyl-quercetin (1), 5,3′-dihydroxy-3,7,4′-trimethoxy flavone (2), 2,6-dimethoxy-p-hydroquinone (3), (-)-catechin (4), morin-3-O-α-L-lyxoside (5),p-hydroxy phenylethyl-O-ß-D-glucopyranoside (6), 3,5-dimethoxy-4-hydroxy phenyl-1-O-ß-D-glucoside (7), fraxin, (8), 3,5-dimethoxy-benzyl alcohol 4-O-ß-D-glucopyrano-side (9) and 4-(2,3-dihydroxy propyl)-2,6-dimethoxy phenyl ß-D-glucopyranoside (10). The compounds were examined for their cytotoxic activity against five cancer cell lines. Compound3 exhibited good cytotoxic activity against five human cancer cell lines with ED50 values ranging from 1.32 to 3.85 μM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahn, D. K., Illustrated Book of Korean Medicinal Herbs. Kyo-Hak publishing, Seoul, p 523 (1998).

    Google Scholar 

  • Adolf, H., Peter, P., and Eric, E. Conn., Dhurrin, (-)-catechin, flavonol glycosides and flavones fromChamaebatia foliolosa.Phytochemistry, 26, 1546–1547 (1987).

    Article  Google Scholar 

  • Bilia, A. R., Morelli, I., Hamburger, M., and Hostettmann, K., Flavanes and a-type proanthocyanidins fromPrunus prostrata.Phytochemistry, 43, 887–892 (1996).

    Article  CAS  Google Scholar 

  • Emi, O., Tetsuya, H., Takamitsu, M., Haruhiro, F., Masami, I., and Mikio, Y., Analgesic Components of Saposhnikovia Root (Saposhnikovia divaricata).Chem. Pharm. Bull., 49, 154–160 (2001).

    Article  Google Scholar 

  • Hatano, T., Hattori, S., Ikeda, Y., Shingu, T., and Okuda, Y., Tannins of Aceraceous plants. Part II. Gallotannins having a 1,5-anhydro-D-glucitol core and some ellagitannins from Acer species.Chem. Pharm. Bull., 38, 1902–1905 (1990).

    CAS  Google Scholar 

  • Hefeng, P. and Lennart, N. L., Phenolics from inner bark ofPinus sylvestris., Phytochemistry, 42, 1185–1189 (1996).

    Article  Google Scholar 

  • Hideaki, O., Mami, T., Shogo, I., Tomohiro, S., and Kazuo, Y., Phenolic compounds fromCoix lachryma-jobi var.ma-yuen., Phytochemistry, 28, 883–886 (1989).

    Article  Google Scholar 

  • Hidetoshi, A. and Gen, I. D., Isolation of antimicrobial compounds from Guava (Pisdium guajava L.) and their structural elucidation.Biosci. Biotechnol. Biochem., 66, 1727–1730 (2002).

    Article  Google Scholar 

  • Hideyuki, M., Hiroyuki, M., Chikako, A., Midori, A., Teruhiko, Y., and Junya, M., Isolation of α-glucosidase inhibitors from hyssop (Hyssopus officinalis).Phytochemistry, 65, 91–97 (2004).

    Article  Google Scholar 

  • Jorn, L., Alfred, B., Thomas, D., Turgen, S., Vidtor, W., Dierk, S., Dieter, S., and Sabine, R., Accumulation of tyrosol glucoside in transgenic potato plants expressing a parsley tyrosine decarboxylase. Hiroko Oguchi, lonone and lignan glycosides fromEpimedium diphyllum.Phytochemistry, 60, 683–689 (2002).

    Article  Google Scholar 

  • Junichi, K., Toru, I., Yasuko, T., Masateru, O., Yasuyuki, I., and Toshihiro, N., Water soluble constituents of Fennel. V Glycosides of Aromatic compounds.Chem. Pharm. Bull., 46, 1587–1590 (1998).

    Google Scholar 

  • Kangi, I., Gen, I. N., and Itsuo, N., Flavan-3-ol and procyanidin glycosides fromQuercus miygii. Phytochemistry, 26, 1167–1170 (1987).

    Article  Google Scholar 

  • Kanji, I., Hiroshi, S., Motoyoshi, S., and Koichiro, S., Phenyl glucosides from hairy root culture ofSwertia jponica.Phytochemistry, 29, 3823–3825 (1990).

    Article  Google Scholar 

  • Kubo, M., Inoue, T., and Nagai, M., Studies on the constituents of aceraceae plants. III. Structure of acerogenin B fromAcer nikoense Maxim.Chem. Pharm. Bull., 28, 1300–1303 (1980).

    CAS  Google Scholar 

  • Kubo, M., Nagai, M., and Inoue, T., Studies on the constituents of ceraceae plants. Carbon-13 nuclear magnetic resonance spectra of acerogenin A, rhododendrol, and related compounds, and structure of aceroside fromAcer nikoense.Chem. Pharm. Bull., 31, 1917–1922 (1983).

    CAS  Google Scholar 

  • Masataka, S. and Masao, K., Studies on the constituents ofOsmantus species. X. Structures of phenolic glucosides form the leaves ofOsmanthus asiaticus Nakai.Chem. Pharm. Bull., 40, 325–326 (1992).

    Google Scholar 

  • Renmin, L., Qinghua, S., Ailing, S., and Jichun, C., Isolation and purification of coumarin compounds fromCortex fraxinus by high-speed counter-current chromatography.J. Chromatogr. A., 1072, 195–199 (2005).

    Article  Google Scholar 

  • Stephen, J. P., Louise, N. J., and David, C. P., High-resolution1H- and13C-NMR. Spectra of D-glucopyranose, 2-acetamido-2-deoxy-D-glucopyranose, and related compounds in aqueous media.Carbohydrate Research, 59, 19–34 (1977).

    Article  Google Scholar 

  • Ying, W., Matthias, H., Joseph, G., and Kurt, H., Antimicrobial flavonoids fromPsiadia trinervia and their methylated and acetylated derivatives.Phytochemistry, 28, 2323–2327 (1989).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kang Ro Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, K.M., Yang, M.C., Lee, K.H. et al. Cytotoxic phenolic constituents ofAcer tegmentosum maxim. Arch Pharm Res 29, 1086–1090 (2006). https://doi.org/10.1007/BF02969296

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02969296

Key words

Navigation